

Affibody functionalized bacterial cellulose tubes for bioseparation applications

Hannes Orelma^a, Luis O. Morales^a, Leena-Sisko Johansson^a, Ingrid C. Hoeger^b, <u>Ilari Filpponen^a</u>, Cristina Castro^c, Janne Laine^a, Orlando J. Rojas^a

^aAalto University, School of Chemical Technology, Department of Forest Products Technology, Espoo, Finland ^bNorth Carolina State University, Departments of Forest Biomaterials and Chemical and Biomolecular Engineering, Raleigh,USA ^cUniversidad Pontificia Bolivariana, School of Engineering, Medellenin, Colombia

Bio-based Colloids & Materials

Objective: Nanocellulosic porous filtration tube

Orelma, H. et al. RSC Adv., 2014, 4, 51440-51450

Wood based cellulose nanofibrils

- Non-toxicity against living organisms
- Strength and stability
- High surface area
- A high number of accessible OH-groups for chemical modification

Tingaut et al. J. Mater. Chem. , 2012, 22, 20105-20111

Microbial cellulose / bacterial cellulose

- Acetobacter, Agrobacterium, Alcaligenes, Pseudomonas, Rhizobium or Sarcina are able to extracellularly produce cellulose
 - Acetobacter xylinum/Gluconacetobacter xylinus is considered to be the most efficient strain
 - Continuous sources of air and carbon are required
 - Cellulose yield of 35-40% in relation to the applied glucose
- Acetobacter microfibrils usually have high crystal structure and thickness in the range of 6-10 nm
- Bacterial cellulose has a high degree of polymerization in the range of 4000-10000 anhydroglucose units
 - Contains more than 99 % water
 - Excellent wet strength

(Klemm et al. 2011, Angewandte Chemie International Edition, vol. 50, no. 24, pp. 5438-5466)

P. Gatenholm, D. Klemm, MRS Bull. 2010, 35, 208 – 213.

Applications of bacterial cellulose

Artificial blood vessels

Kowalska-Ludwicka, Karolina et al. Archives of Medical Science : AMS 9.3 (2013): 527–534. PMC. Web. 2 Mar. 2015.

Scaffolds for tissue engineering

de Olyveira et al. Bacterial Nanocellulose for Medicine Regenerative. J. Nanotechnol. Eng. Med. 2(3), 034001 (2012) Aalto University School of Chemical Technology

Skin therapy

W. Czaja. et al. 2006 Biomaterials, 27 2

Food

http:// healthcarenutritionlifestyle.blogs pot.fi/2012/11/be-slim-with-natade-coco.html **03/05/15**

Nanopaper and paper additives

Incubation conditions and modification strategies of BC

-Polyethylene oxide (PEO)

Fruit juices

Aalto University School of Chemical Technology

٠

Amination

Esterification

Carboxymethylation

Filtering properties of BC

Physical properties of BC

Molecular cut-off

• Never dried membrane up to 66 kDA (BSA) Sokolnicki et al. 2006. J. Membr. Sci. 272. 15-27.

> • Dried membrane 20 kDa (PEG) Shibazaki et al. 1993. J. Appl. Pol. Sci. 50. 965-969.

Pressure resistance

• Up to 880 mmHg (1.17 bar) Bodin et al. 2006. Biotechnol. Bioeng. 97(2). 425-434.

Chemistry

- No electrostatic interactions with proteins
- Highly stable due to high crystallinity degree Vanderhart et al. 1984. Macromolecules. 17. 1465-1472.

Anti-HSA affibodies

Affibodies:

- engineered antibody mimics
- usable in therapeutic, diagnostic and biotechnological applications
- antigen binding site similar to native antibodies
- antigen affinity equal to native antibodies

Advantages:

- small size
- simple molecular structure
- robust physical properties
- ability to fold intracellularly

Images from Gremel et al. 2013. Frontiers in oncology. 271. Review paper: Löfblom et al. 2010. FEBS letters. 584(12), 2670-2680.

Preparation of bacterial cellulose tubes

Strain and incubation conditions:

- Hestrin-Schramm (HS) medium at fixed pH of 4.5
- Gluconoacetobacter medellenisis (G. medellinensis)
- Closed vessel with permeable silicone tubes
- Statical incubation at 28 C for 9 days

echnoloav

Carboxymethyl cellulose (CMC)

Conjugation of affibodies onto the CMC modified BC-tubes via EDC/NHS chemistry

Conjugations of 0.1 mg/ml anti-HSA to CMC with 0.1 M EDC + 0.4 M NHS in 10 mM NaOAc buffer at pH 5

Characterization methods

Wet methods

- Conductometric titration (SCAN-CM 65:02)
 - Charge density of BC after **CMC** addition
- Water retention value (SCAN-C 62:00)
 - Bound water and irreversible structural changes of BC
- Surface Plasmon Resonance (SPR)
 - Interactions between cellulose, CMC and proteins

Aalto University of Chemical

Dry methods

- Imaging with SEM
 - Surface topography of BC
 - Lyophilized via liquid nitrogen
 - Surface and cross-section
- Fluorescence imaging with Confocal Laser Scanning Microscopy (CLSM)
 - Dansylated HSA
 - Tubes were lyophilized via liquid nitrogen

Methods: Interaction analyses with Surface Plasmon Resonance (SPR)

SPR and cellulose model surfaces

- Multimode SPR Navi 200, Oy Bionavis Ltd.
- Angular scan mode
- Langmuir-Schaefer deposited TMSC based cellulose surfaces
 - Cellulose II content up to 70%
- Thickness was modelled with a model

 $d=l\downarrow d/2 \Delta \downarrow SPR angle /m(n\downarrow a - n\downarrow 0)$

• Surface coverage was calculated with an equation

Time

Matthew A. Cooper, Nature Reviews Drug Discovery 1, 515-528 (2002) SPR model from Jung et al. Langmuir 1998, 14, 5636-5648

Anale

Topography of BC tubes

Inner surface

Cross-section

Physical properties of grown BC tubes

- Length ~20 cm
- Diameter ~1 cm
- Wall thickness (wet) 1.8 ± 0.2 mm

Water binding capacity of BC

- Aalto University School of Chemical Technology
- CMC has a small effect on the WRV of never dried BC
- Considerable effect on water binding properties of dried BC
- Highest charge was obtained with CMC additions above 2 g/l

Irreversible changes during drying

 WRV of air-dried TEMPO-oxidized BC sample is lower than that of air-dried CMC-BC samples

• Hornification occurs to a greater extent when the carboxyl groups are located only on the surface of BC-fibrils

Conjugation of anti-HSA affibodies onto cellulose monitored by SPR

- Aalto University School of Chemical Technology
- Specific binding of HSA on the prepared anti-HSA affibody biointerfaces was approximately eight-fold higher (~81 vs. 10 ng/cm2) when anti-HSA was conjugated onto cellulose via EDC/NHS chemistry

Effect of CMC on the adsorption of HSA on cellulose

CMC modification lowers the non-specific adsorption of HSA on cellulose

- Hydrogel like structure
- Anionic charge of CMC

Biofiltration of fluorescence stained proteins with functionalized BC-tubes

alto Universitv

Technoloav

School of Chemical

- Elevated fluorescence with conjugated anti-HSA
- CMC modification decreases the background noise (when compared to that of TEMPO-oxidized samples)

Concluding remarks

- Bacterial tubes were incubated with a presence of CMC
- CMC lowers permanent changes in BC within drying
- Affibodies were covalently conjugated to BC-tubes via EDC/NHS chemistry
- BC-tubes were utilized on the specific detection of HSA

Acknowledgements

Molecular Engineering of Biosynthetic Hybrid Materials Research

B

E

Η

R

