

Lignocellulosic Biofuels Co-Production And Co-Generation Using Integrated Biorefineries. A Solution for the Treatment of Agro-Industrial Wastes

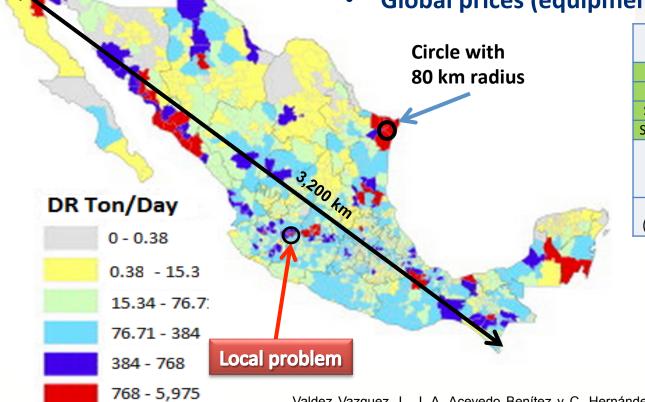
> <u>A. Sanchez,</u> F. Sanjuan, M. Murguía, R. González-Vaca, G. Magaña

Laboratorio de Biocombustibles Unidad Guadalajara de Ingeniería Avanzada Centro de Investigación y de Estudios Avanzados (CINVESTAV) México

Motivation

- Biorefineries for the Mexican context
- Using sustainability criteria as design goals
 - Multi-feed using local agro-industrial wastes as feedstock
 - Co-production of bioethanol, biohydrogen and biogas
 - Electricity surplus
- A 500 ton/day solution for:
 - Restricted availability of biomass
 - Local environmental pollution
- Affordable design at local level but with higher TPC than CBP
- Explore further techno-economics

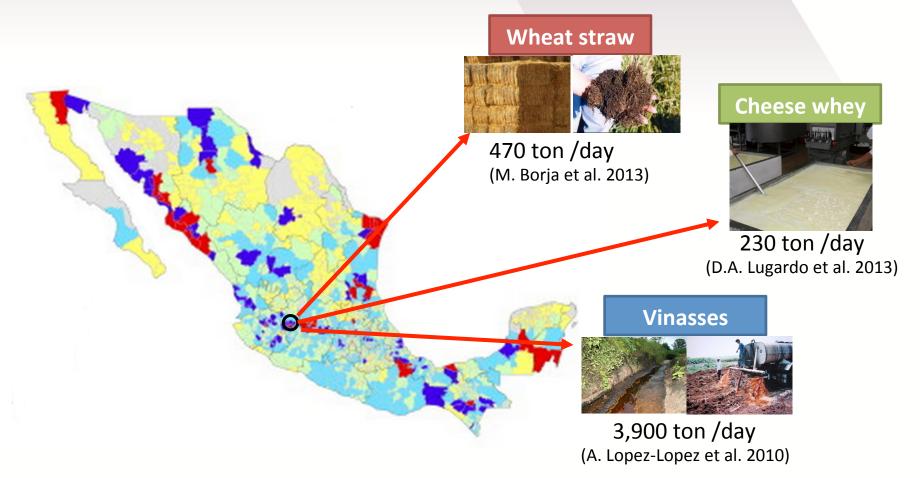
- 1. Biomass availability in Mexico
- 2. Local problem, local solution
- 3. Strategies and tools for economic and energy analyses
- 4. Results: TPC and EER
- 5. Waste treatment analysis
- 6. Conclusions



NERI

Availability of Agricultural Residues in Mexico

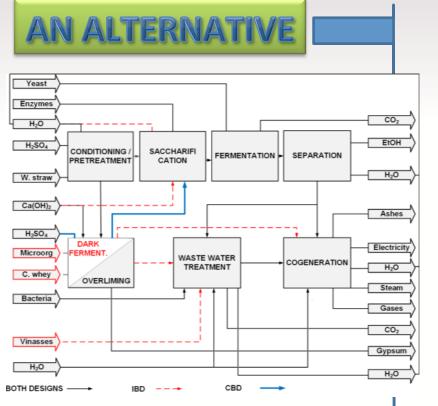
- Crop diversity
- "Large enough" amounts
- Scattered along vast territory
- Global prices (equipment, resources, logistics)


Crop	PCRI	Prod Mton/ year	Res prod Mton/year
Wheat	1.5	3.4	5.1
Corn	1.5	21.9	32.9
Sorghum	1.5	5.5	8.2
Sugarcane	0.15	50.6	7.6
Coffee Cherry (pulp)	0.24	1.5	31.5
Agave (bagasse)	0.12	1.2	1.5

Valdez Vazquez, I., J. A. Acevedo Benítez y C. Hernández Santiago. (2010) Distribution and potential of bioenergy resources from agricultural activities in México. Renewable & Sustainable Energy Reviews. 14(7): 2147-2153 p

Local Problem in a Western Region in Mexico

- Wheat straw and composted wheat straw
- Wastes from tequila and diary industries with high COD


- 1. Biomass availability in Mexico
- 2. Local problem, local solution
- 3. Strategies and tools for economic and energy analyses
- 4. Results: TPC and EER
- 5. Waste treatment analysis
- 6. Conclusions

NERIX

Local Problem in a Western Region of Mexico

Integrated Multi-feed, Coproduction Biorefinery

- Sustainable design
- Medium capacity (500 ton DB/day)
- Solution for pollution problem
- Smaller TPC, 1.20 \$/L EtOH and 0.141 \$/MJout for CBD than IBD10 (1.56 USD/L, 0.148 USD/MJ_{out})

This work: further exploration of the economics (preliminary results, 100% xiloses to dark fermentation)

- Capital and TPC dependence on scale (capacity and feedstock price)
- (CBD + Vinasses + Cheese Whey Treatment) vs. IBD

- 1. Biomass availability in Mexico
- 2. Local problem, local solution
- 3. Strategies and tools for economic and energy analyses
- 4. Results: TPC and EER
- 5. Waste treatment analysis
- 6. Conclusions

Energy Evaluation: EER Tool: Energy integration Pinch analysis for MER Economic Evaluation: DCF Analysis NPV=0 for TPC calculations

Patterson MG. What is energy efficiency? Concepts, indicators and methodological issues. Energy Policy 1996;24(5):377–90. Seider W. J.D. Seader, D. R: Lewin, S. Widagdo Product and Process Design Principles: Synthesis, Analysis and Design, 3rd Edition (2008)

CBD and IBD Conceptual Designs with 100% hydrolisates to Dark Fermentation SuperPro Designer v8.5

Composted wheat stra

Plant Capacity 100 ton/day to 2,000 ton/day Feedstock as a mixture of new and composted whe straws Feedstock price= f(polysacharides content (PC)) • New wheat straw 60% PC-75 USD/ton

Discounted Cash Flow Analysis for NPV=0

$NPV = CF[(1+i) \uparrow n - 1]/(1+i) \uparrow n i + WC/(1+i) \uparrow n - I = 0$

CF = Incomes – Expenses	CT = f(Production costs)
<i>Expenses</i> = Dir. Prod.Costs + taxes + financial costs	<i>I</i> = Fixed Capital - Borrowing

Parameters	Value
Construction Period (years)	3
Project life time (years)	15
IRR (%)	4
Equity (%)	70
Global conversion (g etOh/g DB)	0.20

Unidad Guadalaiara

Borrowing payment period: 3 years, divided equally.

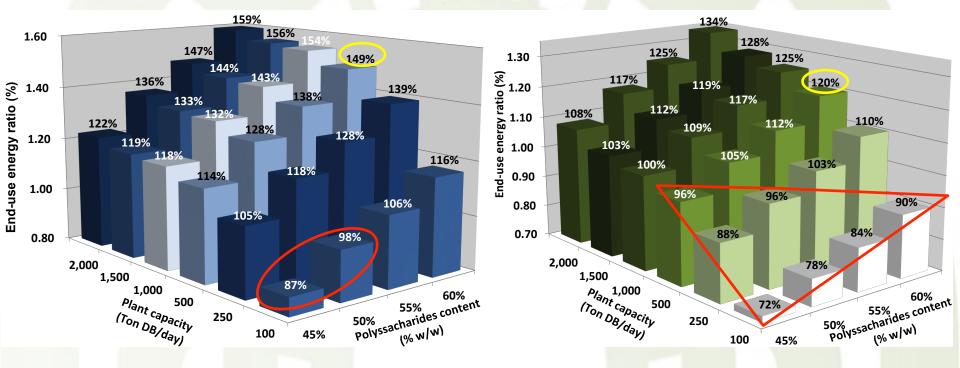
First paymment at production startup

Full production begins at the end of the construction.

- 1. Biomass availability in Mexico
- 2. Local problem, local solution
- 3. Strategies and tools for economic and energy analyses
- 4. Results: TPC and EER
- 5. Waste treatment analysis
- 6. Conclusions

Energy Analysis Results CBD and IBD

EER= ethanol+surplus electricity/electricity required+steam+cooling water

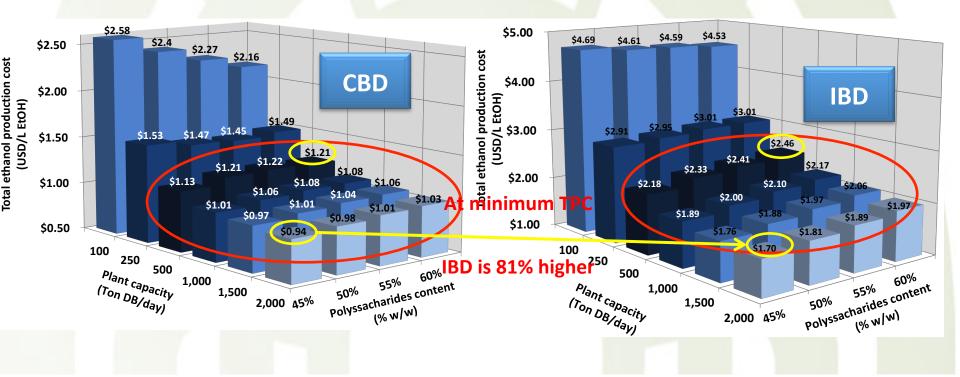

<1, Energy deficit >1, Energy superavit

• *EER* ~ f(PC)

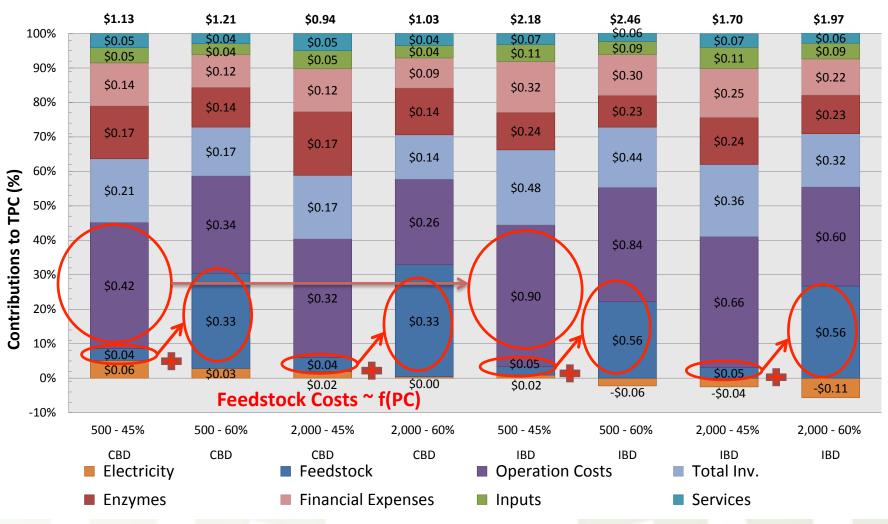
Surplus electricity if Plant Capacity (Ton DB/day)

CBD, Plant Capacity > 250 Ton DB/day

IBD, Plant Capacity > 500 Ton DB/day

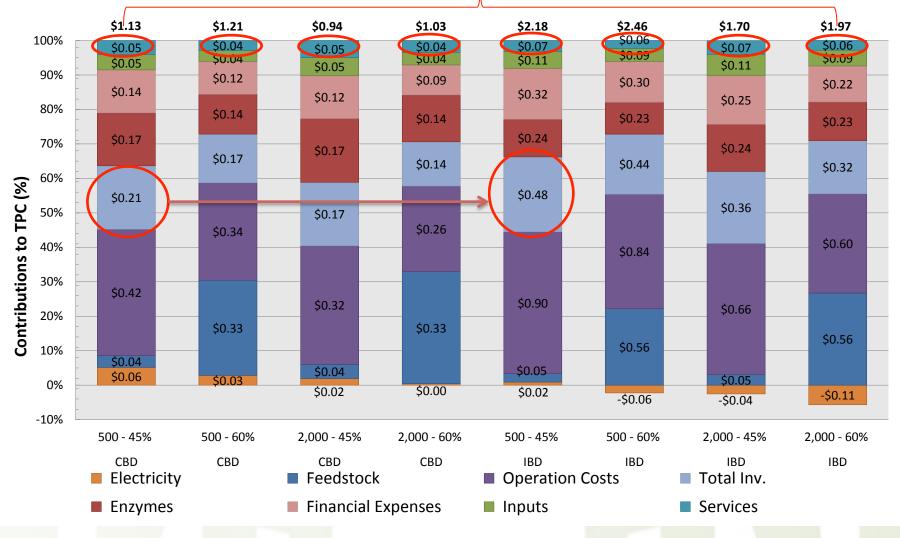


Total Production Cost CBD and IBD


Conceptual Design 500 ton DB, 45% w/w	(\$/	TPC L EtOH)	Bioethanol produced (kg/h)	Cogeneration (kW-h/h)
CBD	\$ 1.13		2562	2402
IBD	\$	2.18	1872	5120
Comparison	0	93%	🥘 -27%	113%

100% of hydrolysates are sent to H² coproduction (Dark Fermentation), means less bioethanol produced but higher electricity cogeneration

Contributions to TPC (CBD and IBD)



Contributions to TPC (CBD and IBD)

Services

- 1. Biomass availability in Mexico
- 2. Local problem, local solution
- 3. Strategies and tools for economic and energy analyses
- 4. Results: TPC and EER
- 5. Waste treatment analysis
- 6. Conclusions

Waste Treatment Analysis

(Cheese Whey + Vinasses + CBD) vs IBD Always better to do it all together

Conceptual Design @500 ton DB, 45% w/w	Total Capital Investment x10^3		Total Operational Cost (\$/yr) x10^3		Power Demand (kW-h/h)	Cogeneration (kW-h/h)
CBD	\$	90,506	\$	42,649	4293	2402
Vinasses WWT	\$	57,806	\$	15,526	292	488.4
Cheese Whey WWT	\$	\$ 25,940		10,421	81	108.5
CBD + WWTs plants	\$	174,252	\$	68,596	4666	2999
IBD	\$	149,350	\$	56,858	5584	5120
Comparison against IBD	0	17%		21%	[2] -16%	[2] 71%

- 1. Biomass availability in Mexico
- 2. Local problem, local solution
- 3. Strategies and tools for economic and energy analyses
- 4. Results: TPC and EER
- 5. Waste treatment analysis
- 6. Conclusions

Conclusions

- A quasi-linear TPC dependence with plant capacity and feedstock price (low sensitivity)
- Total Capital Investment and Operational Costs higher for CBD + WWTs plants than IBD
 Conceptual TPC
- Although IBD TPC is higher...
- IBD 10% hydrolisates to DF as sustainable as CBD

Conceptual Design	TPC (\$/L EtOH)				
45% w/w	@5	00 ton DB	@1000 ton DB		
CBD	\$	1.13	\$	1.01	
IBD	\$	2.18	\$	1.89	
Comparison	0	93%	0	87%	

• Inclusion of other design criteria beyond economics?

Conceptual Design	TPC			% hydrolysates to Dark	
500 ton DB, 60% w/w	(\$/L EtOH) (\$/MJout)				Fermentation
CBD	\$	1.20	\$	0.14	10%
IBD	\$	1.56	\$	0.15	10%
שטו	\$	2.18		-	100%

THANK YOU

Acknowledgements

NERIX

Red Temática Mexicana para el Aprovechamiento Integral Sustentable y Biotecnología de los Agaves (AGARED)

Project 247498

arturo@gdl.cinvestav.mx www.nerixis.org.mx