

PYROLYSIS OF MIXTURES OF PULPING LIQUOR AND SODIUM FORMATE TO PRODUCE A PHENOLIC BIO-OIL

Jamie St. Pierre and Adriaan van Heiningen University of Maine, Orono, ME, USA

Congress on Biorefineries, Conception, Chile, November 23rd, 2015

- Black Liquor as a Feedstock for Fuels and Chemicals
- Commercial Implementation in the Past: Rinman Process
- Background for pyrolysis with added formate salts
- Scheme for implementation in a mill
- Experimental set-up for pyrolysis of Soda-AQ black liquor
- Results and discussion
- Conclusions
- Future work

Black Liquor as a Feedstock

- World annual production: 200 Million Tonne/year
- Currently utilized as low-value fuel $(13 15 \text{ MJ/kg})^1$
- 1.2 1.8 tons spent liquor solids per tonne of pulp¹
- Organic-to-inorganic ratio: 1.4 1.6 kg/kg
- Modern Kraft mill uses 1/3 of black liquor energy for excess electricity generation
- Carbon-containing product of higher value than electricity could be produced instead
- **OBJECTIVE:** Production of significantly deoxygenated bio-oil from black liquor using pyrolysis

The Rinman Process

¹Rydholm, 1985; Rinman, 1916; Rinman, 1920; Niemelä, 2012

Pyrolysis with Formate Salts

- Formic acid is known to donate hydrogen
- Formate salts can decompose into H₂ and CO at pyrolysis temperatures

 $Ca(HCOO)_2 \longrightarrow CaCO_3 + CO + H_2$

- Two innovative processes at the University of Maine
 Thermal Deoxygenation (TDO) of hydrolyzed biomass
 - Formate-Assisted Pyrolysis (FASP) of biomass

P.A. Case et al., Green Chem. 2011

Thermal Deoxygenation (TDO)

Carbon distribution in TDO products versus FA/LA molar ratio

P. Case et al., Green Chemistry, 14 (1), 85 – 89 (2012)

Formate-Assisted Pyrolysis (FAsP)

Bio-oil from lignin (Indulin AT) with calcium formate $(1g FA + 0.5 g Ca(OH)_2/g$ Indulin AT)¹

- Yield increase yield from 23.3 to 32.5 wt%
- O/C molar ratio decreases from 0.19 to 0.067
- HHV increases from $30.7 \rightarrow 41.7 \text{ MJ/kg}$
- Char yield decreases from $41.0 \rightarrow 34.8 \text{ wt\%}$
- Bio-oil quality increases with formate charge

TDO of Soda-AQ Black Liquor

Black Liquor TDO in Pulp Mill

Air

Characterization of Pulping Products

NE Hardwoods, Soda-AQ, L/W 3.5 L/kg, 16% EA. 0.1 % AQ

• Liquor Properties

Dry Solids	REA (g/L	Lignin (wt%	Sugars/Acids	Ash (wt%	Org:Inorg
(wt%)	as Na ₂ O)	on d.s.)	(wt% on d.s.)	on d.s.)	(w:w)
18.6 ± 0.9	6.4 ± 2.1	33.4 ± 5.4	15.9 ± 3.1	40.7 ± 2.2	1.2 ± 0.2

• Pulp Properties

Pulp Yield (%)	Rejects (%)	Kappa No.		
50.0 ± 2.1	0.8 ± 0.4	18.3 ± 5.6		

Organic Yields after Pyrolysis

AINE

14

MAINE

Ultimate Analysis

Sodium Formate/Spent Liquor Organics (wt/wt)

	Feedstock	0	0.2	0.5	0.7	1.2
O:C ^{*,†} (mol/mol)	0.36	0.08	0.09	0.12	0.11	0.09
H:C† (mol/ mol)	1.62	1.28	1.35	1.26	1.30	1.35

*Based on organic material in feed; [†]dry.

- Significant deoxygenation occurring (~ 70 % reduction)
- $\sim 20\%$ reduction in hydrogen content

Bio-Oil Molecular Weight Distribution

	0	0.2	0.5	0.7	1.2
M _w (g/mol)	303	*	314		315
M_n (g/mol)	195		201		200
PDI (M_w/M_n)	1.57		1.56		1.57

*not determined.

AINF

- Oligomers dominate
 - Bio-oil density greater than that of water
- Hypotheses
 - C C linkages remain intact
 - CH₃OH from demethoxylation causing condensation via decomposition to formaldehyde which crosslinks with phenolics to form methylene bridges

Fragmentation Demethylation Demethoxylation

Alkylation

Only 4-8 % of compounds identified!

Image: St. Pierre et al., 2015

Structure accounting for NMR, GPC, and Elemental analysis

No anhydrosugars or acids observed; Most likely converted to cyclic ketones by the presence of sodium compounds

Conclusion

- Formate increases bio-oil yield by a factor of 1.6
- But, similar product distributions for all bio-oils
 - Phenolics dominant compound type
 - Ethyl substituted phenolics most prominent
 - Substituent position on methyl substituted phenolics: m > o > p
 - Demethoxylation observed
 - Cyclic ketones increase as formate loading is increased

- Recommendations for Future Work
 - Fast pyrolysis using Na₂CO₃ pellets as fluidizing and heat transfer media
 - Pyrolysis of softwood Kraft spent liquor

Thank You!

Questions?

Funding Provided By:

DOE EPSCoR #DE-FG02-07-ER46373 University of Maine J. Larcom Ober Chair University of Maine Pulp and Paper Foundation ¹³C NMR of Bio-Oil

¹³ C Assignment	Shift (ppm) ¹	Integrated Area $(\%)^*$
Carbonyl	165 — 215	0.5 ± 0.3
Aromatic	110 — 165	64.7 ± 3.0
Carbohydrate	70 — 110	0.2 ± 0.2
Methoxy/Hydroxy	54 — 70	1.7 ± 0.3
Alkyl	1 — 54	32.9 ± 2.5
Aromatic + Alkyl		97.6

*Corrected to account for incomplete longitudinal relaxation¹.

MAINE