





### Sumario

- Introducción
- Objetivo
- Metodología experimental
- Resultados
- Conclusión

# Introducción

### Paja de trigo como materia prima disponible

#### **Chile**

Superficie sembrada 245.000 ha. de trigo



Paja en rastrojos 6-10 (ton/ha)<sup>1</sup> 1.5 – 2.5 MM ton/ año





#### La paja de trigo, **representa**:

8% - 12 % del consumo total trozas sector forestal (año 2010: 20 MM ton\*)

20% - 30% del consumo trozas industria pulpable (año 2010: 7 MM ton\*)

#### Es una materia prima cuantiosa

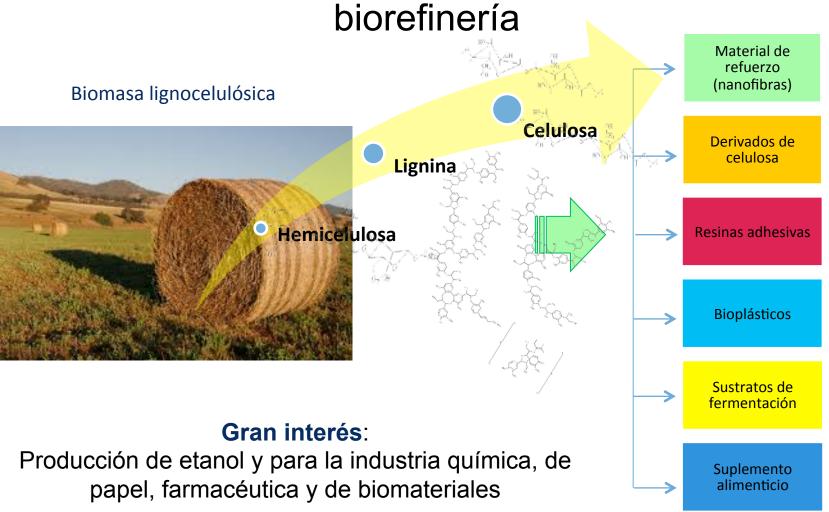
- Infor, Boletín estadístico, N° 128/2011
- Hetz H, et al 2008: Disponibilidad de paja en los rastrojos de trigo en tres provincias de Chile. Agricultura Técnica (Chile) 66 (4):393,401

### Destino actual de la paja de trigo en Chile



**Quema:** Alternativa más utilizada, es económica y rápida.




Es un problema aún sin solución, sin embargo se comienza a crear conciencia en la búsqueda de alternativas.

<u>Uso para generación de energía renovable:</u> residuos agrícolas, < 20% en mezclas con biomasa forestal.



Elevado contenido de inorgánicos/problemas en calderas

Potencial de la paja de trigo en el concepto de la biorofinoría



Desarrollar tecnologías viables que permitan fraccionar la paja de trigo de forma limpia y eficiente para elaborar productos de alto valor comercial.

### Objetivo

Desarrollar un proceso químico de deslignificación, simple, de mínimo impacto ambiental y escalable, para obtener celulosa, hemicelulosa y lignina a partir de paja de trigo.

## Metodología

Escala de laboratorio



**DESLIGNIFICACIÓN** Elección del solvente



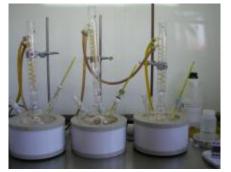
CRITERIO DE **EVALUACIÓN** 



**VALOR ESPERADO** 

Ácido nítrico en medio acético

Ácido fórmico en medio acuoso

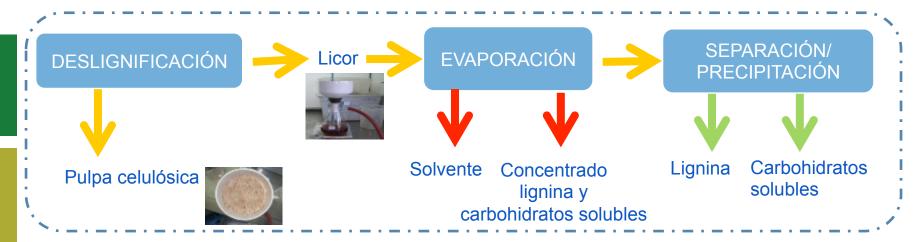

Ácido fórmico

- Solventes orgánicos
- Recuperables
- Mínimo impacto ambiente

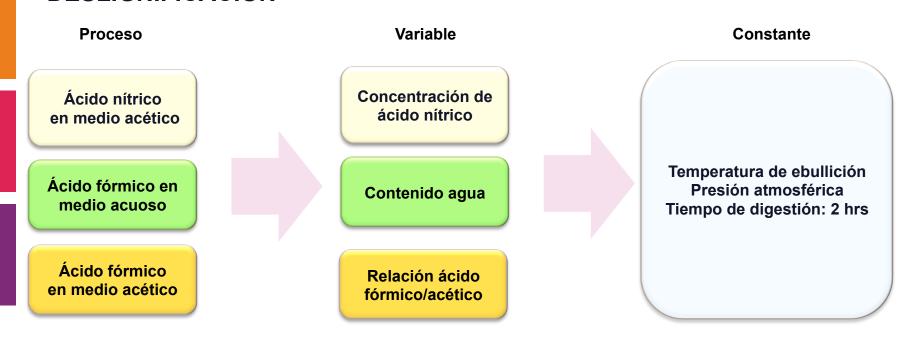
N° Kappa Viscosidad intrínseca

Bajo Nº Kappa < 25 Viscosidad intrínseca > 900 ml/g

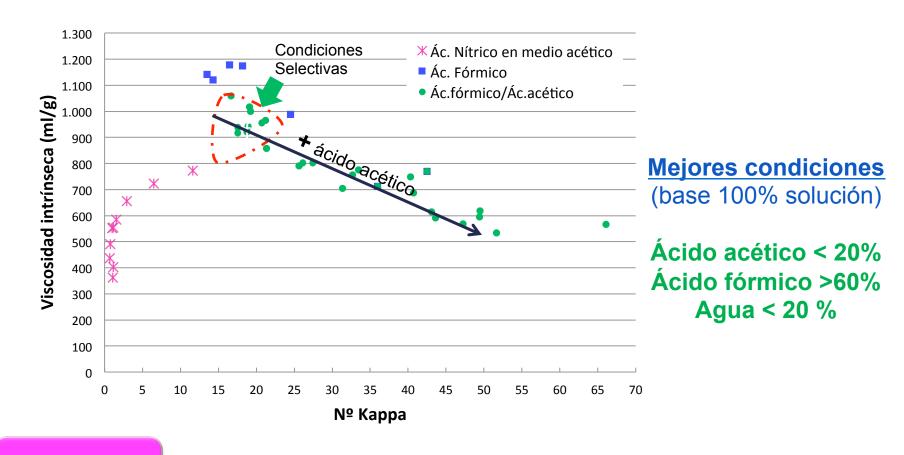
en medio acético









### Primera etapa



#### **DESLIGNIFICACIÓN**



### Resultados



Ácido nítrico en medio acético

La degradación de la celulosa aumenta al aumentar la concentración de ácido nítrico

Ácido fórmico en medio acuoso

A altas concentraciones, excelente capacidad para remover lignina. Es selectivo. El contenido de agua debe ser mínimo < 20%.

Ácido fórmico / Ácido acético Buena capacidad de remoción de lignina, pero sólo a bajos contenidos de ácido acético en la mezcla, <20%.

### Escalamiento piloto



Ácido fórmico: 67±3 Ácido acético: 15±5

> Agua: 18±2 L/S: 20

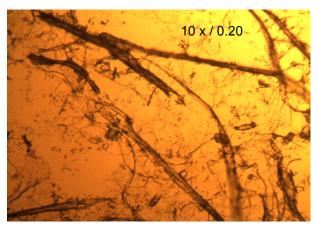
Rendimiento: 46%

N° Kappa: 20

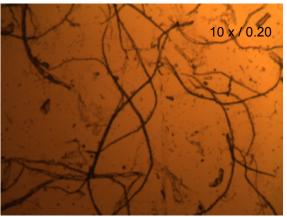
Viscosidad: 895

Blancura: 24%




Carbohidratos solubles



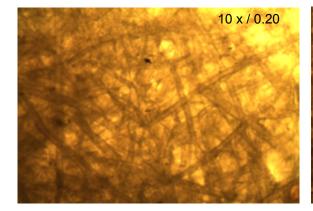



Materias primas de uso industrial

## Uso de fibra de paja de trigo en papel








Fibras de paja de trigo

| Tipo Pulpa                    | % Fibra Larga<br>(1,3 – 3,0) | % Fibra Mediana<br>(0,8 – 1,3) | % Fibra Corta<br>(0,02 – 0,8) |
|-------------------------------|------------------------------|--------------------------------|-------------------------------|
|                               | ( mm)                        | ( mm)                          | (mm)                          |
| M e c á n i c a<br>Eucaliptus | >30                          | 35                             | <35%                          |
| Paja de Trigo                 | 5,2                          | 53,2                           | 41,7                          |

Fibras más cortas. Pared celular más delgada.

#### Muestras de hojas formadas en Laboratorio



Hoja de papel pulpa mecánica



Hoja de papel pulpa paja trigo



Hoja de papel pulpa paja trigo

#### Resistencia mecánica de hojas de papel de paja de trigo

Índice de Tracción (Nm/g): 34,3 (Para pulpa mecánica >31,5) Índice de Rasgado (Nm/g): 5,2 (Para pulpa mecánica < 5,5)

- **Aplicaciones potenciales** •
- Mezclas con pulpa mecánica
- Aditivo o relleno mejorar opacidad.
  - Reemplazo de fibras de papel reciclado.
  - Papeles de menor gramaje
  - Papeles especiales (mural)
  - Envases biodegradables

#### **Conclusiones**

- Las condiciones óptimas para deslignificar paja de trigo a presión atmosférica son utilizar una mezcla de ácido fórmico > 60 %, de ácido acético < 20% y agua < 20 %, durante un tiempo de cocción de 2 horas a temperatura de ebullición.
- A nivel laboratorio las características de la pulpa obtenida N° Kappa (16) y viscosidad intrínseca (1050 ml/g), permiten concluir que la primera etapa es altamente selectiva, con una fuerte remoción de lignina, sin daño a la celulosa.
- •El proceso fue escalable a nivel piloto y se obtuvieron características levemente inferiores a las obtenidas a escala de laboratorio, N°Kappa (20) y viscosidad (895).
- •El proceso de deslignificación utilizado para la obtención de celulosa, hemicelulosa y lignina, es simple, limpio y factible de escalar.

# **Gracias!**

c.fuentealba@udt.cl