Bioplastics – Next Generation Polymer Materials for Reducing Carbon and Enviromental Footpring

Dan Graiver and Ramani Narayan Michigan State University

graiverd @egr.msu.edu and narayan@msu.edu

If you use any of the slides/materials, please reference authorship and affiliation (Ramani Narayan, Michigan State University) – thank you

Copyright Ramani Narayan

Outline

- Introduce basic concepts and principles related to bioplastics - biobased - biodegradable plastics and products
 - Value proposition for "bio"
 - Terminology/definitions
- Carbon and Environmental footprint
 - Material carbon footprint
 - Process carbon footprint
 - Total environmental footprint
 - Natural carbon cycle

WHAT IS THIS ALL ABOUT? Framing the question

CARBON!! – burning issue of the day!

- Carbon footprint/profile of product, company, country
- Managing Carbon!!
 - WHAT ARE YOU DOING TO REDUCE YOUR
 PRODUCTS CARBON FOOTPRINT OR PROFILE zero
 carbon or carbon neutral footprint
 - Environmental footprint or profile (Other than carbon) LCA methodology
 - CARBON FOOTPRINT VALUE PROPOSITION!

The "VALUE PROPOSITION"

- Use bio/renewable feedstock (as opposed to petro/fossil feedstock to manufacture plastic products (biobased or biomass based plastics):
 - Reduces our carbon footprint and moves us to zero carbon or carbon neutral footprint
 - Reduce CO₂ emissions --- global warming climate change
 - Document using biocarbon content using ASTM D6866
 - Provides a positive environmental footprint/profile

The "VALUE PROPOSITION" FOR BIODEGRADALBE PLASTICS

- Using biodegradability as an end-of-life option to completely remove single use short life disposable plastics from the environmental compartment in a safe and efficacious manner via microbial assimilation (microbial food chain)
- Degradable, partial biodegradable not acceptable serious health and environmental consequences
 - Disposal environment (e.g. composting, anaerobic digestor, marine, etc.)
 - Time to complete biodegradation

Specification Standards ASTM D6400, D6868, D7021

TERMINOLOGY

BIOBASED (BIOMASS OR RENEWABLE BASED)

- Organic material containing in whole or part biogenic (biological sources) carbon
- Refers to using biomass or crop feedstock (New carbon) vs petroleum or fossil feedstock (Old carbon)
- Reducing carbon footprint

TERMINOLOGY

BIODEGRADABILITY – END-OF-LIFE scenario

- need to identify the (end-of-life) disposal system like composting, anaerobic digestion, marine, soil
- using microbes to completely utilize the carbon substrate and removing it from the environmental compartment -- enter into the microbial food chain
- Time to complete microbial utilization no residue remaining

TERMINOLOGY

BIOMATERIALS -- Biomedical applications Refers to: **Any** material (metal, plastic, ceramic) implanted in the body

- design and engineering considerations different
- biodegradability considerations different

Terminology (Contd)

BIODEGRADABLE

• Time – 180 days ; max 1 year

digestor, soil, marine

 Complete utilization of the substrate carbon by the microorganisms as measured by the evolved CO₂ (aerobic) and CO₂ + CH₄ (anaerobic)

Carbon Entry to Biotic world

Photosynthesis

Sunlight energy $CO_2 + H_2O \longrightarrow (CH_2O)_x + O_2$

Plants, algae, marine biotic and some bacteria

Chemoautotrophis

 $2CO_2 + H_2O \longrightarrow 2HCO_3 \xrightarrow{Ca^{++}} 2CaCO_3$ Clams, corals, shells, oysters and some algae

GLOBAL CARBON CYCLING Global warming/climate change – WHY SHOULD WE CARE?

Intrinsic Carbon Value Proposition Materials Carbon Footprint

CARBON FOOTPRINT

kg of CO2 per 100 kg of plastic

Material & Process (Total) carbon footprint

Carbon Footprint Including Conversion

Results of the utilization of renewable energy and new technology on GHG

Vink et al, www.natureworksllc.com

TOOLS to compute and report on carbon and environmental footprint

- Biobased carbon content determination:
- Codified in ASTM D6866 to determine biocarbon content
- Use biobased carbon content to document carbon footprint reduction INTRINSIC MATERIAL CARBON VALUE PROPOSITION
- Process carbon and total environmental footprint using LCA tools – ASTM D7075; ISO 1440

Standards Identify & Quantify Biobased Content

¹⁴C signature forms the basis of Standard test method to quantify biobased content (ASTM D6866)

Biomass/Bio-organics $(^{12}CH_2O)_x \leftrightarrow (^{14}CH_2O)_x$ **NEW CARBON** > 10⁶ years **Fossil Resources** (petroleum, natural gas, coal) $(^{12}CH_2)_n$ $(^{12}CHO)_x$ **OLD CARBON**

BIO OR BIOBASED CONTENT

Amount of biobased *carbon* in the material or product as fraction weight (mass) or percent weight (mass) of the total organic carbon in the material or product.

% BIO or BIOBASED CONTENT = BIO (Organic) CARBON * 100

On a carbon basis, not weight or mole or any other measure.

Reducing carbon foot print is the driver for using a bio/renewable feedstock (new carbon)

-- not oxygen or nitrogen or anything else

Therefore: biocarbon content is a true measure

BIOBASED CONTENT

EXAMPLE 1:

Product 'A' is a fiber reinforced composite with the composition 30% biofiber (cellulose) + 70% polypropylene (petroleum based organic)

Product 'A' biobased content = 18.5% -- not 30%!!!!

- Because biobased content is on a carbon basis
- 0.3*45.5/(0.3*45.5+0.7*85.7) = 18.5%

BIOBASED CONTENT

EXAMPLE 2:

Product 'B' is a fiber reinforced composite with the composition 30% biofiber (cellulose) + 70% polylactic acid (biobased)

Product 'B' biobased content = 100% All carbon is biobased carbon

BIOBASED CONTENT -- EXAMPLES

Composite	Biofiber (cellulose)	Glass fibers	PLA	РР	Biobase content	Organic content
А	30%			70%	18.5%	100%
В	30%		70%		100%	100%
С		30%	70%		100%	70%

biobased content is based on carbon

Fundamental value proposition for biobased or biomass based plastic

The intrinsic carbon value proposition for biobased plastics:

- "material carbon" footprint ASTM D6866
- "process carbon" foot print energy convert feedstock to product (renewable/bio vs fossil/petro) - ASTM D7075/ISO 1440 (LCA methodology)
 - Reduced or neutral (zero) carbon footprint
 Reduced GHG (CO₂) emissions

U.S. Farm Security and Rural Investment Act of 2002 (P. L. 107-171), Title IX Energy, Section 9002 FARM BILL

- Federal Procurement of Biobased Products the "biopreferred program" (www.biopreferred.gov)
 - develop guidelines for designating biobased products
 - publish a list & issue criteria for a designated biobased products list (DBL) for federal purchase;

Includes:

- > Definition, content verification, ASTM D6866
- environmental profile using LCA ASTM Standard
 - ASTM D7075 "Standard practice for evaluating and reporting environmental performance of biobased products". -- LCA TOOLS/BEES analysis
 - To incorporate life cycle costing
- Biodegradability using ASTM D6400 and D6868 (paper coatings) D7021 (marine)
- performance requirements; and
- > assurance that products are available.