

DIBANET: Collaboration in Biorefinery Research Between Europe and Latin America

Daniel Hayes University of Limerick, Ireland

www.carbolea.ul.ie

III Latin American Congress Biorefineries 19/11/12

With the support of the Seventh Framework Programme.

University of Limerick

SEVENTH FRAMEWORK PROGRAMME THEME: FP7-ENERGY.2008.3.2.1

"Enhancing international cooperation between the EU and Latin America in the field of biofuels"

DIBANET = Development of Integrated Biomass Approaches NETwork

"The production of Sustainable Diesel Miscible Biofuels from Europe and Latin America"

DIBANET Partners

There are 13 partners in the group, 5 from the EU & 8 from Latin America. The total budget for the 42 month project is €3.72m. DIBANET is co-ordinated by UL

5 Key Scientific Objectives

- 1. Optimise the yields of levulinic acid (and co-products), from the conversion of biomass, while minimising chemical/ energy requirements.
- 2. Improve the energy balance of the production of levulinic acid and the total biofuel yields possible from a feedstock by sustainably utilising the residues in pyrolysis/gasification processes.

- 3. Reduce the energy and chemical costs involved in producing ethyl-levulinate from levulinic acid and ethanol.
- Select key biomass feedstocks for conversion to levulinic acid, analyse these, and develop rapid analytical methods that can be used in an online process.
- 5. Analyse the DMBs produced for their compliance to EN590 requirements and, if non-compliant, suggest means to achieve compliance.

DIBANET processes & products & their linkages

- 1. Analysis of biomass and development of NIRS as a rapid primary analytical tool.
- 2. Development of pretreatment technologies for biomass.
- Production of levulinic acid, formic acid, furfural and ethyl levulinate from biomass.

- Carbolea developed standardised analytical methodologies for all DIBANET partners for important constituents:
 - C6 Sugars: Glucose, Galactose, Mannose
 - C5 Sugars: Arabinose, Xylose
 - Lignin content (acid soluble and insoluble)
 - Extractives
 - Ash.
 - Elemental analysis.
- Carbolea researchers have analysed over 1,000 samples via wet-chemical or NIRS.

NIRS - Concept

- NIR radiation can be absorbed by molecular bonds, resulting in vibrational movements.
- The radiation must be of the correct frequency/wavelength to allow absorption (quantum levels).

- A calibration set of samples with known compositions (determined via conventional methods) are used to develop the models.
- These models relate spectral variations to chemical variations using chemometric methods (e.g. PLS).
- The performance of the models is determined by testing them on the validation set; samples outside the calibration set.
- Important regression statistics:
 - R² for validation set (model predicted value vs. real value).
 - RMSEP/SEP standard error of prediction (error of estimate).

Application of NIRS in Carbolea

- We target the development of robust and accurate calibration equations for material that is wet and of a heterogeneous particle size.
- The vast majority of existing publications regarding the use of NIRS for the characterisation of lignocellulosic materials have focused on dry samples that have been ground down to a homogeneous particle size (< 1mm).
- They have preferred this method because the presence of water can mask the absorbance signal of some of the analytes of interest.

Sample Preparation

DIBONE.

ASTM Guidelines for NIRS Calibration

- The quality of the calibration is determined relative to the natural variation that exists for the components of that feedstock.
- A ratio is determined by dividing the range in concentration by the SEP.
- A ratio of 15+ is considered to be good for quantitative calibration.
- A ratio of 10-15 is considered good for screening control.
- E.g. if the cellulose content of Miscanthus varies between 40 and 50%. The maximum SEP permitted to allow a ratio of 15 is 0.67%. This shows the importance of **highly** accurate and reproducible lab methods.

Chemometric Models Developed at Carbolea

- Straws.
- Waste Papers.
- Peat.
- Pretreated Miscanthus.
- Residues and Hydrolysates from the DIBANET hydrolysis process.
- Hydrolysates from analytical hydrolysis.
- Miscanthus.
- A global dataset containing all samples.

Miscanthus Samples

- "I" = Internodes
- "N" = Nodes (each plant also sampled by the metre).
- "K" = Live leaves (>60% green by visual inspection)
- "M" = Live Sheaths
- "F" = Dead leaves (<60% green by visual inspection)
- "H" = Dead sheaths
- "FL" = Flowers
- "WP" = Whole plant (sometimes separate metre sections are collected)
- Over 700 such samples collected.

Glucose Models

DS

WU

Miscanthus Glucose Models

	DS	DG	DU	WU
Calib:Valid	159:42	125:45	128:44	147:42
PLS Factors	16	16	14	14
CV - <i>R↓1</i> 2	0.9663	0.9435	0.9248	0.9545
RMSECV	0.9142	1.1394	1.3778	1.0823
RER (CV)	22.9086	18.0032	15.1918	19.3456
Prediction - <i>R↓1</i> 2	0.9680	0.9483	0.8922	0.9305
RMSEP	0.8617	0.9680	1.2374	1.2663
RER	23.8086	21.2891	13.3996	16.2032

Miscanthus Xylose Models

	DS	DG	DU	WU
Calib:Valid	149:42	125:45	128:44	147:42
PLS Factors	14	14	14	14
CV - <i>R↓1</i> 2	0.9571	0.9565	0.9178	0.8605
RMSECV	0.4262	0.4547	0.6059	0.7757
RER (CV)	27.9720	26.1357	16.1676	15.3696
Prediction - R↓12	0.9475	0.9392	0.9249	0.9292
RMSEP	0.4571	0.4664	0.6245	0.5317
RER	20.0524	20.6527	19.5001	17.0500

Klason Lignin Models (Gig)

	DS	DG	DU	WU
Calib:Valid	126:31	104:31	105:29	138:31
PLS Factors	8	8	8	10
CV - <i>R</i> 112	0.9568	0.9541	0.9448	0.9173
RMSECV	0.5775	0.5596	0.5910	0.8055
RER (CV)	19.9707	20.5908	18.3601	14.3213
Prediction - <i>R</i> ↓↑2	0.9747	0.9532	0.9666	0.9576
RMSEP	0.4812	0.6121	0.5198	0.5980
RER	18.4932	15.9996	20.9808	15.7505

Miscanthus Models - Summary

	DS	DU	WU	RMSEP _{wu}	RER _{WU}
Glucose	А	В	Α	1.26%	16.20
Xylose	А	А	А	0.53%	17.05
Rhamnos	e B	В	С	0.06%	8.38
Mannose	e C	С	С	0.07%	5.52
Arabinose	e B	В	В	0.27%	11.04
Galactose	e C	С	С	0.12%	7.97
Total Suga	rs A	В	Α	1.21%	18.59
KL	А	Α	Α	0.60%	15.75
ASL	А	В	В	0.42%	10.62
Ash	А	В	В	0.93%	10.66
EXTR_PD	В	В	С	1.38%	7.83
Nitrogen	А	С	С	0.28%	6.84
Moisture	. –	-	А	2.52%	23.80

Changes in Stem to Leaf Ratio

Early vs. Late Harvest – Whole Plant

Early vs. Late Harvest – Whole Plant (2)

Changes Over Window

DIBANET Biomass Report

Spin-Out Analysis Company

- Sugars
- Lignin (Klason and acid soluble)
- Ash
- Extractives (ethanol and water)
- Elemental
- More planned in mid-term.
- Accuracy of DIBANET methods has been identified as superior to other competing companies and the literature.
- Company will offer guarantees on precision of analysis.
- (2) NIR Analysis Predictions of the above based on models developed.

Current Work

- Daniel Hayes working at CTC (Brazil) as part of DIBANET for the development of NIR models for sugarcane bagasse.
- Includes the deployment of an online NIR system at a sugar-mill.

2. Pretreatment of Biomass

The Context

- Is there a process to :
 - Reduce Mechanical energy inputs (Grinding, Chopping)
 - Reduce Energy inputs (heat)
 - Increase biorefining yields
 - Environmentally sustainable
 - Cost effective
 - Capital, energy, rendering of output streams
 - Encompasses the best attributes of different approaches

✓ Suitable solvents for lignin such as formic and acetic acid, ethanol.

✓Selective dissolution and degradation of lignin.

✓Organic acids work as solvent and catalytic agent to break down lignocellulose: hemicellulose hydrolysis.

Swelling and interaction by hydrogen bonding.

Formosolv	Alcell	Organocell	Milox
Formic acid reduces residual lignin to 4% in beech wood at 130°C	It uses aqueous ethanol at 180-200°C with additives such as H_2SO_4 and naphthol.	It uses aqueous methanol at 175-200°C with additional NaOH (~12%).	It uses solutions of peroxide (up to 2.5%) in aqueous formic acid in a three stage process.

Oxidative Hydrolysis

- H2O2:
 - An oxidiser at ambient temperature in combination with an organic acid yields per-acid: effective lignin remover
 - Can be catalytically triggered to decompose rapidly (Fe, Transition metals, pH)
 - Decomposes Exothermically (pressure)
 - Environmental
 - Cost effective: available as a bulk chemical

 FA/H_2O_2

- Higher peroxide concentrations not used
 - Excessive oxidation of the lignin
 - Excessive degradation of holo-cellulose to undesired reaction products
- Typical milox process
 - Multi step at least 2 usually 3 at atmospheric pressure
 - Organosolv
 - Performic (1-2% Peroxide on biomass)
 - Alkaline oxidation
 - Residence times 1-3 hrs @ 70-130 °C

Fast Oxidative Fractionation of Biomass in Formic Acid

- ✓ Oxidative properties of H_2O_2 (bulk chemical) for the fast lignin fractionation: High recovery lignin yields.
- Exothermic reaction provides the energy for hemicellulose hydrolysis in the acidic medium.
- \checkmark High cellulosic pulp to facilitate further conversion.
- \checkmark Cost effective and sustainable.

Experimental Procedure

Temporal Evolution of the Liquor

- Once the secondary structure of the material collapses lignin and sugar release is triggered
 - Time to max liquor level dependent on concentration
 - At higher peroxide some degradation of the cellulose is beginning

Solids Analysis

	Miscanthus	2.50%	5.00%	7.50%
Glucose	40.31	52.40	72.12	79.16
Galactose	0.64	0.53	0.14	0.04
Mannose	0.25	0.17	0.13	0.07
Total C6	41.20	53.10	72.39	79.27
Xylose	19.38	22.72	11.95	4.92
Arabinose	2.15	2.11	0.43	0.12
Rahmnose	0.21	0.13	0.08	0.06
Total C5	21.74	24.96	12.46	5.10
K-Lignin	21.79	5.95	4.47	6.02
Extractives	1.81	2.00	3.29	5.58

Mass Balance (1)

Unlike conventional milox: increased peroxide increases recoverability of lignin and hemi-cellulose from the liquor

Mass Balance (2)

Unlike conventional milox: increased peroxide increases recoverability of lignin and hemi-cellulose from the liquor

Mass Balance (3)

Unlike conventional milox: increased peroxide increases recoverability of lignin and hemi-cellulose from the liquor

Time of digestion: 24 hrs

Avicel 101

Time of digestion:48 hrs

2. Pretreatment: Summary

\checkmark Oxidative pretreatment of biomass

- Hydrogen Peroxide in Formic Acid treatment fractionates in a rapid process all components in lignocellulosic biomass into products for further transformation.
- Potential for reducing energy consumption (heat generated/no extensive biomass grinding) is attractive.
- Extensive separation of lignin is reached: Up to 90% of the lignin can be removed from the biomass.
- Process may be optimised through H₂O₂ concentration and residence time: appropriate temperature and residence time for pentoses conversion and lignin fractionation.

3. Acid Hydrolysis of Biomass

Levulinic acid (LA)

- Levulinic acid (LA):
 - is a major product of the hydrolysis of lignocellulosic biomass using an acid catalyst.
 - has two functional groups (carboxylic and ketone).

 has been identified as one of the top-twelve platform chemicals derived from biomass.

Werpy, et al. (2004) Top Value Added Chemicals from Biomass. National Renewable Energy Laboratory

Derivatives of Levulinic Acid

Conversions of LA to alternative fuels

Furfural and its Derivatives

Corma et al. (2007) Chem. Rev., 107(6), 2411-2502.

Effects of Temperature and Acid Concentration

Temperature, °C

- ✓ High acid concentration and mild to lower temperatures favour LA formation and reduce humin formation.
- ✓ Hemicellulose (Xylan) reacts rapidly at the these conditions: shorter residence times are required.

Effects of Temperature and Acid Concentration

Levulinic Acid from Brazilian Feedstocks

Levulinic Acid from Irish Feedstocks

Reaction Networks for Kinetic Study

Continuous Reactor

3. Hydrolysis: Summary

✓ Acid catalysed Hydrolysis of Biomass:

- Due to the complex nature of biomass, multiple reactions are occurring simultaneously during aqueous acid catalysed process at high temperature.
- Process can be optimised by controlling temperature, acid concentration and residence time towards Levulinic Acid and Furfural: Yields up to 75% mol for LevAc at 150° C and 0.5 M H_2SO_4 in 8 hours. Lower temperatures/longer residence time can improve LevAc yields.
- Solid loading is another important parameter during the process: lower initial glucan availability leads to higher levulinic acid yields.
- Solid loading should be considered in balanced insight: bulk material density of biomass, recovery and separation of products after process.

- Acknowledgements
 - Prof M. Hayes
 - Dr D. Haverty
 - Dr. K. Vongsanga

Publications

- Dr J. J Leahy
- Dr A. Piterina
- M. Ashworth

- Dr B. Giristuta
- K. Dussan
- F. Melligan
- Hayes, D. J. M. (2012) Development of near infrared spectroscopy models for the quantitative prediction of the lignocellulosic components of wet Miscanthus models, **Bioresource Technology** (119), 393-405
- Hayes, D. J. M. (2012) Second generation biofuels: Why they are taking so long, WIREs Energy and Environment, Accepted
- Haverty *et al.* (2012) Autothermal, single-stage, performic acid pretreatment of Miscanthus x giganteus for the rapid fractionation of its biomass components into a lignin/hemicellulose-rich liquor and a cellulasedigestible pulp, **Bioresource Technology** (109), 173-177.
- Melligan *et al.* (2012) Pressurised pyrolysis of Miscanthus using a fixed bed reactor, **Bioresource Technology** (102), 3466-3470
- Girisuta *et al.* (2012) A kinetic study of acid catalysed hydrolysis of sugar cane, **Chem. Eng. J.**, Accepted

Further Details

www.carbolea.ul.ie

www.dibanet.org

danieljohnhayes@gmail.com

Thanks!!

Questions?