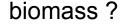
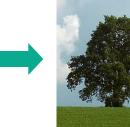

Lignin to aromatic compounds. The Base Catalysed Degradation in continuous reactors - a tentative review

<u>Detlef Schmiedl</u>¹, Gerd Unkelbach², Sarah Böringer¹, Detlef Rückert¹, Rainer Schweppe¹

- 1) Fraunhofer Institute for Chemical Technology ICT (Fh-ICT, Pfinztal, Germany),
- ²) Fraunhofer Center for Chemical-Biotechnological Processes CBP (Fh-CBP, Leuna, Germany)



Biomass - A new feedstock for the 21. century?


coal (> 1950) crude oil / natural gas

Price of

Annual Production Price of Product

From coal to crude oil - new efficient techniques have been developed for an economic production of chemicals

For the shift from oil & gas to bio mass based chemicals it has to be the same

Course of the oil price: 2009 – Nov 2012

Rohölpreise in jährlicher Entwicklung

Dollar / Barrel

125.

120.

125.

120.

125.

120.

125.

120.

125.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

120.

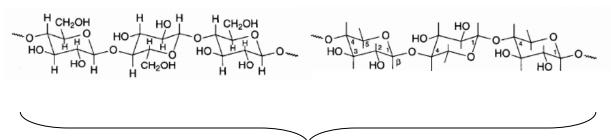
120.

120.

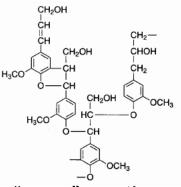
functionalized Carbon (2010) ethylene 110 Mio. t/a 890 €/t 1035 €/t C 75 Mio. t/a 850 €/t 988 €/t C propylene 45 Mio. t/a 830 €/t 902 €/t C benzene 320 Mio. t/a 500 €/t cellulose 1250 €/t C starch 55 Mio. t/a 250 €/t 625 €/t C 143 Mio. t/a 300 €/t 750 €/t C sugar ethanol 36 Mio. t/a 365 €/t 700 €/t C lignin

Utilizing lignocellulose biomass

Fractionation of hardwood by a modified Organosolv-process

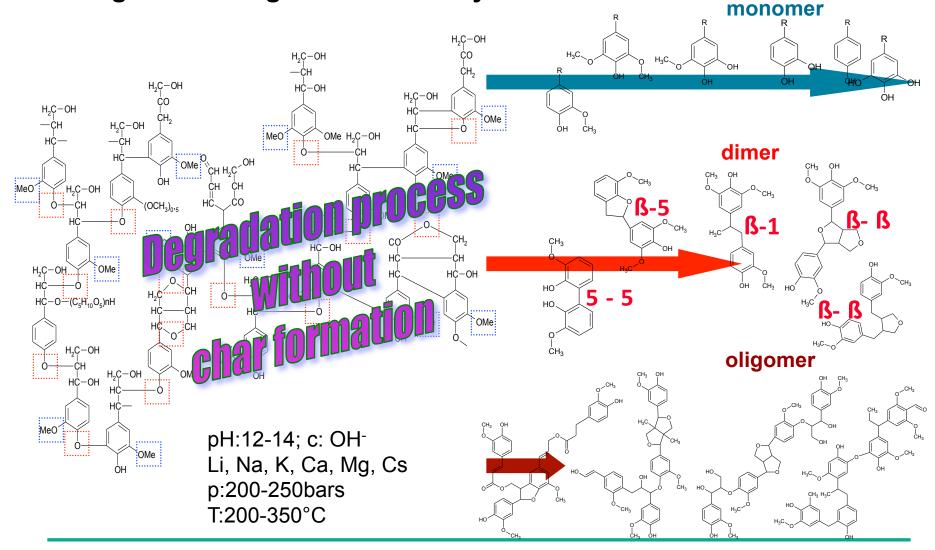

Pilot project "German lignocellulose bio refinery"

Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz wir häufer bestellt wir hauf der bestell


Cellulose

Hemicellulose

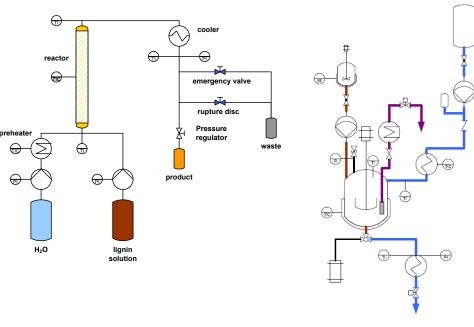
Lignin 28-31% (soft wood); 18-25% (hard wood)


Hydrolysis results in C₆- and C₅-sugars as feedstock for fermentation or chemical reactions

Not yet an "easy" continuously degradation process for Lignin

Only material applications (formaldehyde resins, PU foams, casting resins)

<u>Chemical</u> principle of an alkaline hydrolysis process (BCD) on Lignin for the generation of oxy aromatics


Engineering principles of the BCD-process (Reaction & Separation

Techniques)

BCD procedure & down stream

H₂O + lignin + catalyst H₂O pH ~ 13 reactor 🗲 H₂O + phenolics + tar pH ~ 8-10 acidification H₂O + phenolics + tar pH ~3-4 filtration H₂O + phenolics tar pH ~3-4 extraction org. solvent + H₂O + not extractable phenolics $pH \sim 3-4$ distillation distillation monomer & not extractable & oligomer salts phenolics oligomer phenolics

General flow diagram of a plug flow reactor & a continuously stirred tank reactor

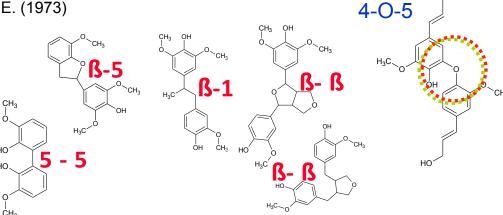
T: 200-350°C,

p: up to 250 bar,

 τ : 35sec to 15min dwell time

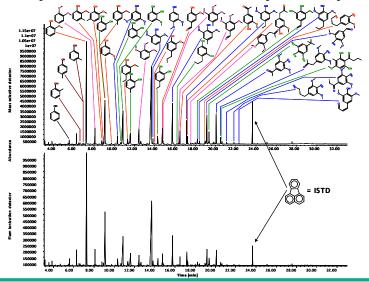
10 % Lignin

Structural properties of lignin (botanical origin/incidence of bond type based on 100C₉ units)


bond type	dimeric	softwood (spruce)	hardwood (beech)
	st/Bart	C ₉ units of 100	C ₉ units of 100
β-Ο-4	β-arylether had 1005	48	65
α-Ο-4	benducther	6 – 8	
β-5	phen	mtatious	6
5-5	biphenyhic 11195	10 – 11	2
943·0f 8	Thenylether 17 18 5	4	2
β-1	1,2- Dy Popane	7	15
β-β	THF or resinol type	2	2 + 5

Ref.: ERICKSON, M.; LARSSON, S.; MISCHKE, G.E. (1973)

NIMZ, H.; LÜDEMANN, H.D. (1974)

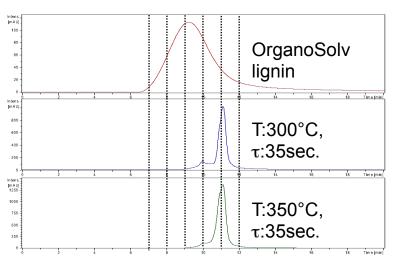


dimer & oligomer composition & functionality of BCD oil and tar

Analytical methods

- Reactor water, extracts and filter-cakes were characterized by gravimetric analysis
- Elemental analysis (CHONS) on the oil and tar fractions
- Monomers were identified and quantified by GC-MSD/FID
- Reactor water was analyzed by HPLC RID (formic acid, acetic acid, methanol)
- Oligomeric oxyaromatics were analyzed by LC MSD Ion Trap XCT+ / SEC

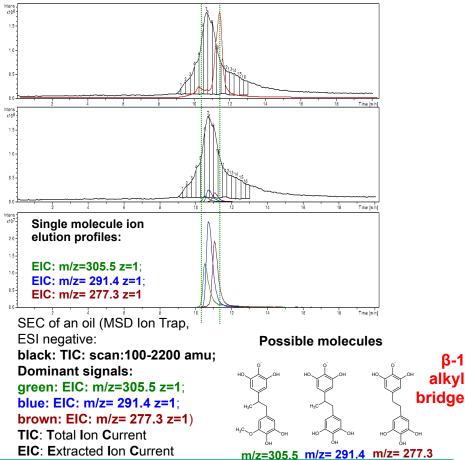
GC-MSD/FID analysis of monomer compounds in a BCD oil



Analytical methods

Oligomeric oxyaromatics were analyzed on a SEC DAD MSD Ion Trap XCT+

Elution profile - SEC / DAD (oil):

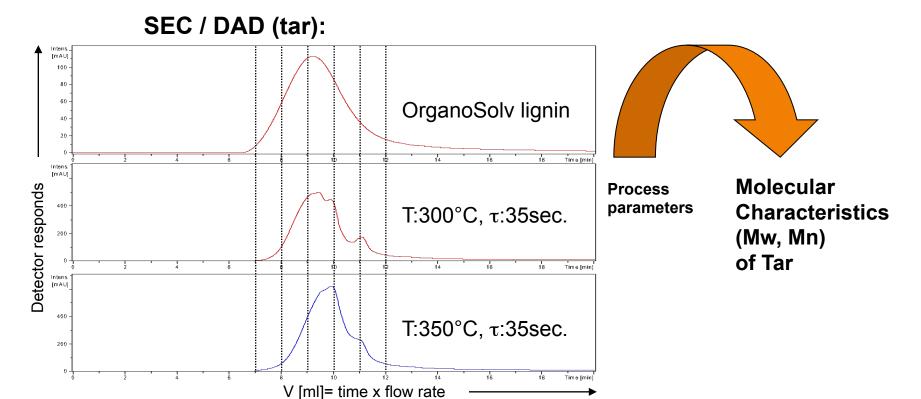

SEC of **lignin** (red), **oil L38**(blue), **oil L39**(green) on SDV micro, 4.6x30mm, 4.6x250mm, 3µ, 50 Å (PSS Mainz, Germany), mobile phase: THF non-stabilized,

flow rate: 0.250ml/min;

DAD λ: 280nm ± 2nm, cell size: 5μl; Temp: 50°C,

HPLC system: Agilent RR HT 1200SL.

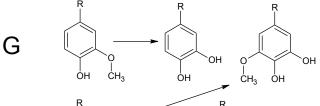
SEC / DAD / ESI neg. MSD Ion Trap (oil):

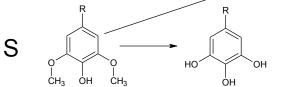


Analytical methods

Oligomeric oxyaromatics were analyzed on a SEC-DAD-MSD Ion Trap XCT+

SEC of **lignin** (upper), **tar L38** (red), **tar L39** (blue) on SDV micro, 4.6x30mm, 4.6x250mm, 3μ , 50 Å (PSS Mainz, Germany),mobile phase: THF non-stabilized, flow rate: 0.250ml/min; DAD λ : 280nm \pm 2nm, cell size: 5μ l; Temp: 50° C, HPLC system: Agilent RR HT 1200SL.

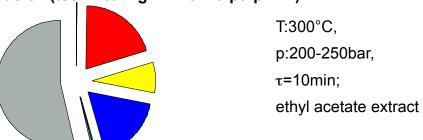

Structural properties of lignin (botanical origin/monomer type)


Botanical source of lignin:

H/G/S-Lignin G/S or S/G-Lignin (hw) ~ G-Lignin (sw)

annual plant

perennial plant

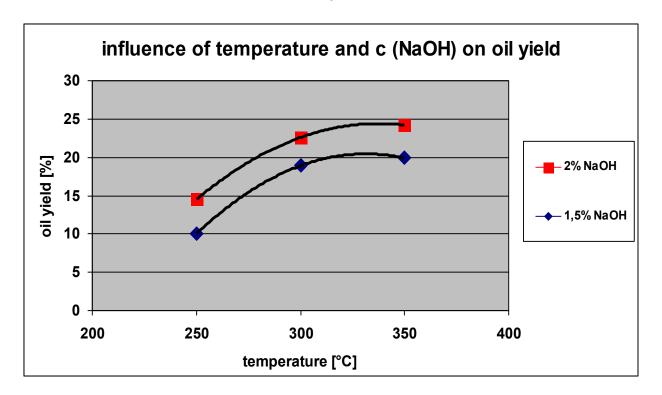


Structural properties

monomer composition of BCD oil

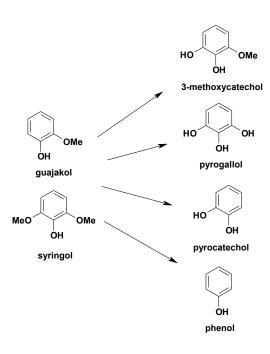
Crude oil (HGS lignin) Crude oil (hard wood lignin)

Crude oil (technical lignin from a pulp mill)


- •phenol
- guajacol & monomethoxyphenols
- syringol & dimethoxyphenols
- o-hydroxyphenol derivatives
- m-hydroxyphenol derivatives
- benzene; 1,2,3- triol derivatives
- alkylphenols
- di- & trimethoxy-alkylbenzenes; alkylbenzenes
- unknown & oligomers

Effect of Temperature & [NaOH] on oil yield

const. τ =600s, p=250bar; ethyl acetate extracted; BCD on beech lignin

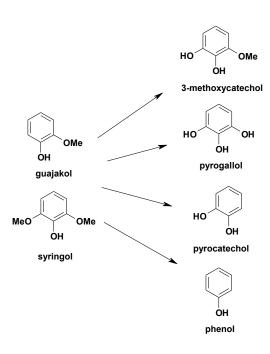

- Highest oil yields (ethyl acetate extracts) at 350°C with 2% NaOH.
- Adding more base has no significant effect on oil yield / more acid is needed during downstream processing of the reactor water

Effect of Temperature on oil composition

const. τ =600s, p=250bar; ethyl acetate extracted, BCD on beech lignin

Groups of compounds		wt% compared to oil			
		300°C	350°C		
Phenol	0,1	0,1	0,4		
Guaiacol & mono-methoxy phenol derivatives	8,8	16,4	22,9		
Syringol & di-methoxy phenol derivatives	24,6	25,0	4,4		
o-Hydroxy phenol derivatives	0,6	9,1	27,9		
m-Hydroxyphenol derivatives	0,0	0,0	0,6		
Benzene 1,2,3 -triol derivatives	0,0	0,5	0,8		
Alkyl-phenol derivatives	0,0	0,0	0,4		
Di- & Tri-methoxy-alkyl-benzenes, alkyl-benzenes	0,4	1,8	1,5		
Unknown & Oligomer compounds	65,6	47,0	41,0		

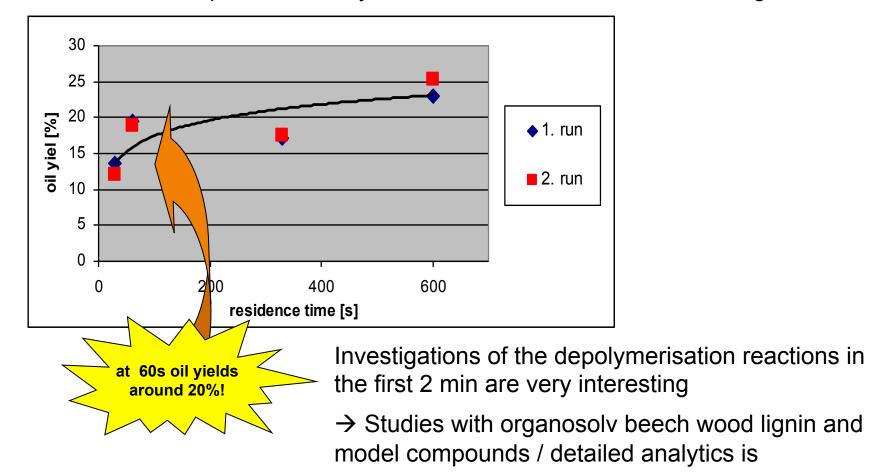
- Increasing reaction temperature increases hydroxy-functionalities in the oil ratification by experiments with model compounds
- The amount of oligomer compounds in the oil decreases by increasing T
- Monomers were identified and quantified by GC-MSD/FID on column HP-5ms



Effect of residence time on oil composition

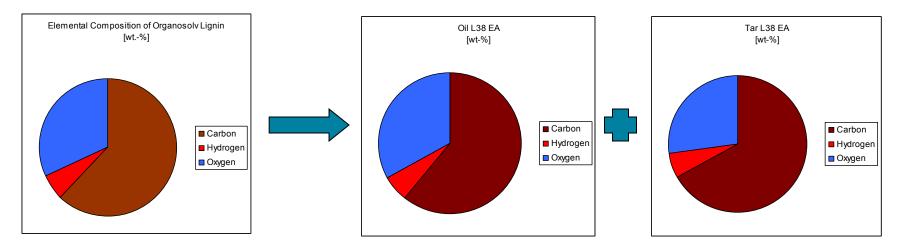
const. T=300°C, p=250bar; ethyl acetate extracted; BCD on beech lignin

Groups of compounds		wt% compared to oil			
		600s	900s		
Phenol	0,2	0,1	0,2		
Guaiacol & mono-methoxy phenol derivatives	17,4	16,4	14,4		
Syringol & di-methoxy phenol derivatives	32,7	25,0	23,6		
o-Hydroxy phenol derivatives	6,2	9,1	15,8		
m-Hydroxyphenol derivatives	0,0	0,0	0,1		
Benzene 1,2,3 -triol derivatives	0,6	0,5	0,9		
Alkyl-phenol derivatives	0,1	0,0	0,2		
Di- & Tri-methoxy-alkyl-benzenes, alkyl-benzenes	1,4	1,8	2,2		
Unknown & Oligomer compounds	41,4	47,0	42,7		


- Increasing residence time slightly increases hydroxy-functionalities in the oil ratification by experiments with model compounds
- The amount of oligomer compounds in the oil didn't change
- Monomers were identified and quantified by GC-MSD/FID on column HP-5ms

Effect of residence time on oil yield

const. T=350°C, p=250bar; ethyl acetate extracted; BCD on beech lignin



necessary!

Carbon balance of BCD products

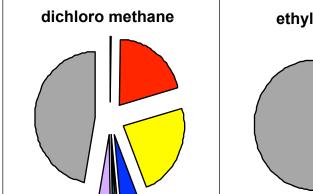
T=300 & 350°C, p=250bar, τ=35s; ethyl acetate extracted; BCD on beech lignin

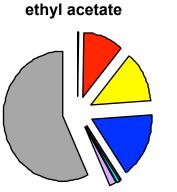
Fractions / phases	300°C	350°C
Oil	10.5 % Carbon of Lignin	18.0% Carbon of Lignin
Tar	73.2% Carbon of Lignin	56.8% Carbon of Lignin
formic acid, acetic acid, methanol in reactor water	2,5% Carbon of Lignin	4.4% Carbon of Lignin
Carbon lost via gaseous phase / downstream pro.	13.8% Carbon of Lignin	20.8% Carbon of Lignin

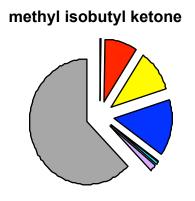
Carbon is the only element which is distributed during BCD!
Fractions are analyzed by HPLC-MS/RID/DAD and elemental analysis

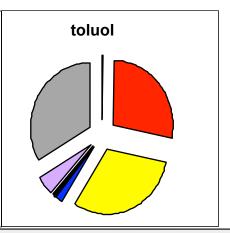
BCD on beech lignin under reductive conditions / the Hydrogen donor effect

T=350°C, p=250bar, τ=600sec; ethyl acetate extracted; BCD on beech lignin




Adding formate for *in situ* H₂-generation decreases the oil yield from 25% to 19%, but produces more catechols derivatives.

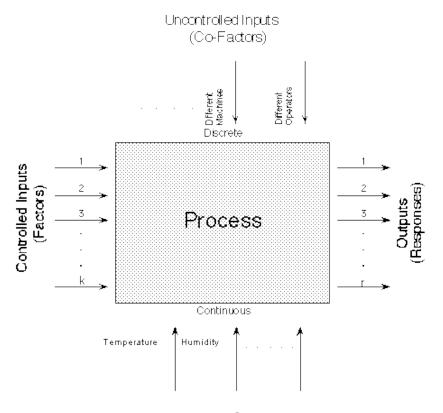




Compound distribution of oil depends also on extraction solvent

	wt-% compared to oil				
	dichloro methane	ethyl acetate	methyl isobutyl ketone	toluol	
Phenol	0,3	0,2	0,2	0,2	
Guaiacol & mono-methoxy phenol deriv.	20,2	10,9	9,1	27,8	
Syringol & di-methoxy phenol derivatives	23,4	12,7	10,9	31,1	
o-Hydroxy phenol derivatives	4,6	16,5	14,7	2,1	
m-Hydroxyphenol derivatives	0,4	0,3	0,2	0,3	
Benzene 1,2,3 -triol derivatives	0,5	0,7	0,6	0,0	
Alkyl-phenol derivatives	0,3	0,2	0,2	0,4	
Di-&Trimethoxy-alkyl-benz., alkyl-benzenes	3,2	1,7	1,6	4,8	
Oligomere compounds	47,1	56,9	62,5	33,4	

Oil mass [mg] extratced from 750g reactor water	550	1070	1310	420
---	-----	------	------	-----



Part II. Lignin cleavage for the production of oxy aromatics/ technical Lignin from a pulp mill

The BCD process as "Black Box" process on Kraft-Lignin

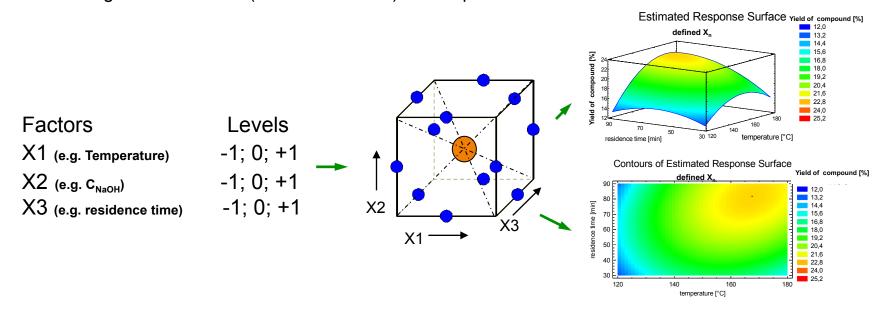
The Box-Behnken design

A 'Black Box' Process Model Schematic

TABLE 3.24 Structural Comparisons of CCC (CCI), CCF, and Box-Behnken Designs for Three Factors

CCC (CCI)				CCF			Box-Behnken				
Rep	Xl	X2	X3	Rep	X1	X2	<i>X</i> 3	Rep	X1	X2	<i>X</i> 3
1	-1	-1	-1	1	-1	-1	-1	1	-1	-1	0
1	+1	-1	-1	1	+1	-1	-1	1	+1	-1	0
1	-1	+1	-1	1	-1	+1	-1	1	-1	+1	0
1	+1	+1	-1	1	+1	+1	-1	1	+1	+1	0
1	-1	-1	+1	1	-1	-1	+1	1	-1	0	-1
1	+1	-1	+1	1	+1	-1	+1	1	+1	0	-1
1	-1	+1	+1	1	-1	+1	+1	1	-1	0	+1
1	+1	+1	+1	1	+1	+1	+1	1	+1	0	+1
1	-1.682	0	0	1	-1	0	0	1	0	-1	-1
1	1.682	0	0	1	+1	0	0	1	0	+1	-1
1	0	-1.682	0	1	0	-1	0	1	0	-1	+1
1	0	1.682	0	1	0	+1	0	1	0	+1	+1
1	0	0	-1.682	1	0	0	-1	3	0	0	0
1	0	0	1.682	1	0	0	+1				
6	0	0	0	6	0	0	0				
	Total Runs = 20			Tota	l Ru	ıns =	20	Tota	l Ru	ns =	15

Part II. Lignin cleavage for the production of oxy aromatics/ technical Lignin from a pulp mill

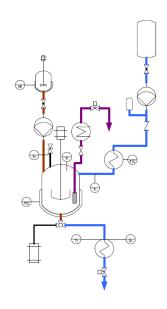

The Box-Behnken design

is an independent quadratic design (for the response surface methodology) based on combined statistical tests and quadratic equations.

In this design the treatment combinations (combination of Process parameters (X_n))

are at the midpoints of edges (12) of the process space and at the center (3).

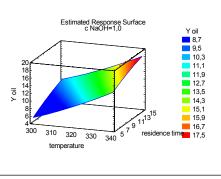
These designs are rotatable (or near rotatable) and require 3 levels of each factor:



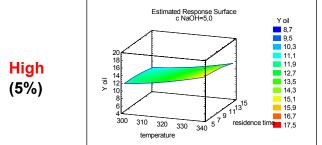
Part II. Lignin cleavage for the production of oxy aromatics/ technical Lignin from a pulp mill

What are the goals of DoE in BCD of technical Lignin?

- Parametric studies (variable T, τ, C_{catalyst}) at const. p, C_{technical Lignin}
 (screening experiments to evaluate the reaction behavior)
- Effect of the variable process parameters/ controlled inputs (T, τ, C_{catalyst})
 Effect of a Co-factor (mineral content:12wt.-%; (Na+, K+, Mg 2+)) on:
 - Yield of Oil and Tar
 - Monomer composition of the Oil
 - Elemental composition of Lignin, Oil and Tar
 - Carbon balance / Carbon distribution over phases
 - Molecular weight of Tar

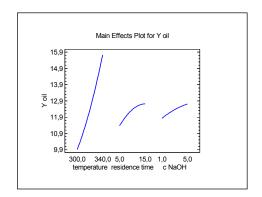

technical Lignin from a pulp mill

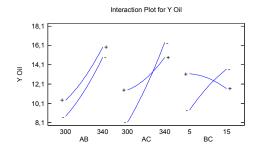
[NaOH]


Low (1%)

Medium

(3%)




Estimated Response Surface c NaOH=3,0 Y oil 8,7 10,3 11,1 11.9 12,7 = 14 0 12 ≻ 10 13.5 14,3 15,1 15.9 16,7 310 residence time 17,5 320 340 5 330

temperature

effect of C _{NaOH} on the oil Yield

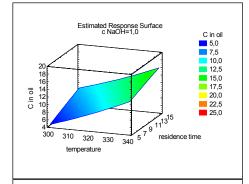
Optimize Response

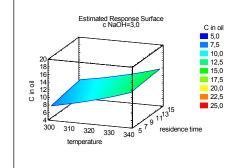
Goal: maximize Yield of Oil [wt.-%]

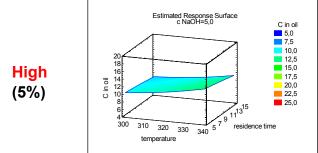
Estimated optimum value = 17,94 [wt.-%]

Correlation: $R^2 = 95,44 \%$

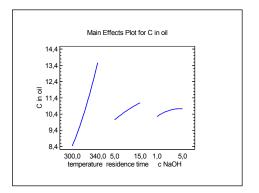
Factor		Low	High	Optimum
Temperature	[°C]	300,0	340,0	339,433
Dwell time	[min]	5,0	15,0	15,0
C _{NaOH}	[%]	1,0	5,0	1,0

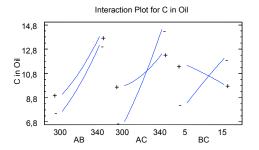

technical Lignin from a pulp mill


[NaOH]


Low (1%)

Medium


(3%)

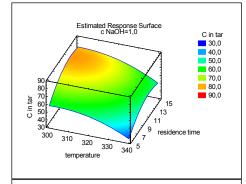


effect of C _{NaOH} on the relative Carbon content in oil

Optimize Response

Goal: maximize Carbon in Oil originating from Lignin [wt.-%] – Conversion degree into Oil

Estimated optimum value = 15,91 [wt.-%]

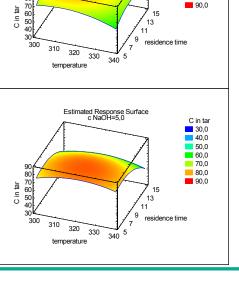

Correlation: $R^2 = 94,32 \%$

Factor	Low	High	Optimum
Temperature [°C]	300,0	340,0	339,437
Dwell time [min]	5,0	15,0	15,0
c _{NaOH} [%]	1,0	5,0	1,0

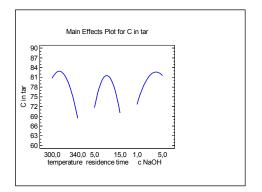
technical Lignin from a pulp mill

[NaOH]

Low (1%)



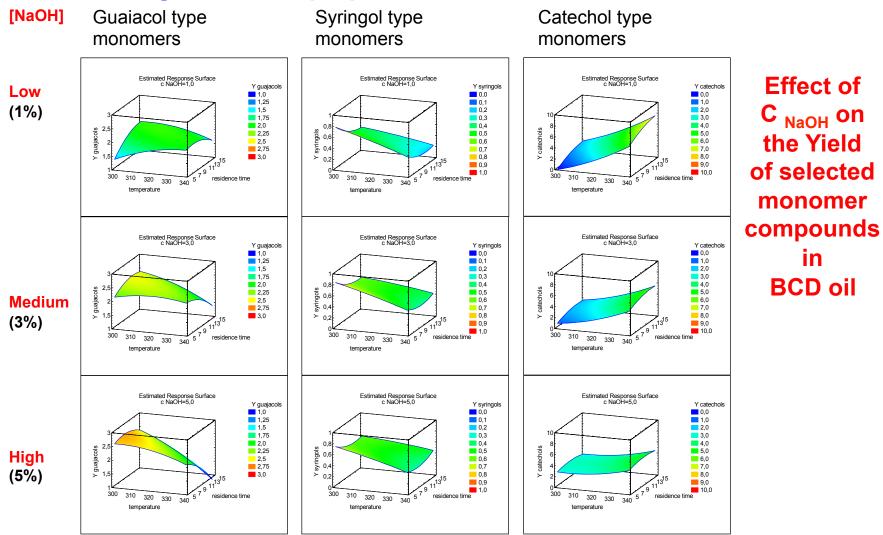
Estimated Response Surface c NaOH=3,0


C in tar
30,0
40,0
50,0
60,0
70,0
80,0

Medium (3%)

High (5%)

Effect of C _{NaOH} on the relative Carbon content in Tar


Optimize Response

Goal: maximize Carbon in Tar originating from Lignin [wt.-%] – Conversion degree into Tar

technical Lignin from a pulp mill

technical Lignin from a pulp mill

Mw

Mn Estimated Response Surface c NaOH=1.0 Estimated Response Surface c NaOH=1.0 Low 1400,0 660,0 1440.0 675.0 (1%)690.0 1480 O 1520.0 705.0 800 1560,0 720,0 1600.0 735.0 750 <u>≩</u>1400 1640,0 750,0 **≦** 700 1680,0 1720.0 780.0 1760.0 795.0 1000 1800,0 810,0 residence time 825,0 residence time 1840,0 temperature Estimated Response Surface c NaOH=3.0 1400,0 660,0 675.0 690,0 705,0 720,0 735,0 Medium <u>≩</u>1400 750,0 1680,0 765,0 1720.0 780,0 (3%)795,0 residence time 825,0 330 Estimated Response Surface c NaOH=5.0 1400,0 660,0 1440,0 675,0 1480,0 690,0 1520,0 705,0 800 1560,0 720,0 1600 1600,0 735,0 High 750 <u>≩</u>1400 1640,0 ≨ ₇₀₀ 750,0 1680.0 765.0 (5%) 1720.0 780.0 1760,0 795,0 1800,0 residence time 1840,0 810,0 310 310 320 330 340 320 330 340 residence time 825.0 temperature temperature

technical Lignin: Mw: 3592g/moles Mn: 1022g/moles

PD: 3 54

Effect of C _{NaOH} on the molecular characteristic (Mw, Mn) of Tar

[NaOH]

Summary: Process factors / substrate factors effect during BCD on Lignin

 Generally process parameters & the type of lignin influence the yield, composition & properties of the fractions (tar, oil)

process parameters:

T, τ, p, catalyst

presence of additives

Botanical source/ Pulping conditions:

HGS-Lignin (annual plants)

GS/SG-Lignin (hard wood)

G-Lignin (soft wood)

Mixtures

Summary

- Oil yields are around 20 wt% in short residence times by BCD on OrganoSolv Lignin (beech)
- The yield of water insoluble (pH=3) oligomeric compounds (tar) is approx. 50wt% of Lignin
- Addition of sodium formiate favors the cleavage of aryl-methyl-ether bonds → increase of hydroxy functionalities in oil and tar
- Depending on the process parameters (T, p, residence time, catalyst) and the downstream processing a defined product distribution can be reached
- The downstream processing / extraction has to be optimized
- Only combined processes (- subsequent bond splitting by hydro cracking, pyrolysis or oxidation of Tar) will be successful for high monomer aromatic yields
- BCD on Lignin is also a pretreatment step for biotechnological conversion routes.

Acknowledgment:

Agency for Renewable Resources (Ministry for Agriculture, Forestry, Fishery & Consumer protection), Germany, for financial support

Dow Chemical for cooperation

Nordic pulp mill & paper industry for cooperation and financial support

vTI, Hamburg, Germany (D. Meier (PhD)) for the references & advice

International Lignin Institute, (A. Abaecherli) for the Lignin of an annual plant

Colleagues of Fraunhofer ICT (Pfinztal, Germany) for the team work

Contact

Detlef Schmiedl, PhD

Fraunhofer Institute for Chemical Technology ICT Environmental Engineering
Joseph-von-Fraunhofer-Str.7
D-76327 Pfinztal
Phone ++49(0)721/4640-747
Fax ++49(0)721/4640-111

E-mail: detlef.schmiedl@ict.fraunhofer.de

http://www.ict.fraunhofer.de

Gerd Unkelbach

Fraunhofer Center for Chemical-Biotechnological Processes CBP Am Haupttor (Bau 4310) 06243 Leuna Phone ++49 (0)721/4640-605 E-mail:gerd.unkelbach@cbp.fraunhofer.de http://www.cbp.fraunhofer.de

Thank you for your attention!

