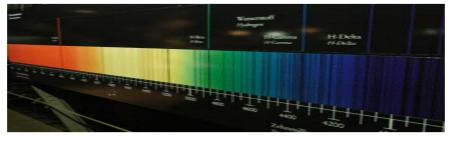
Biorefinery integrated
production system
for the future
A success story of a
medium enterprise

Eckhard Weidner

2nd Latin American Congress on Biorefineries: Materials and Energy

May 4th 2009, Concepcion Chile

May 2009


Joseph von Fraunhofer (1787 - 1826)

Researcher »Fraunhofer Lines«

InventorNew Methods of Lens Processing

Entrepreneur
Head of Royal Glass Factory

Fraunhofer Society 2008

1.5 billion € budget

Alliances and networks

- Microelectronics
 - Production Fraunhofer UMSICH
- Materials and components
- Life sciences
- Information / communication technology
- Surface technology and photonics
- Defense and security
- Networks: energy, water, nanotechnology

Keynotes about Fraunhofer UMSICHT

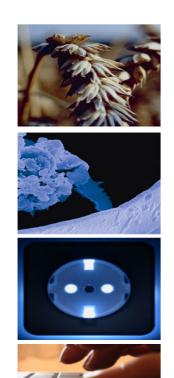
Foundation — 1990

Member of the FhG since → 1998

Sales 2008 — 19.7 million €

Industrial Returns 2008 → 9.1 million €

Permanent Staff — 133


Total staff — 273

Branches — Willich + Teterow

Key Research Areas

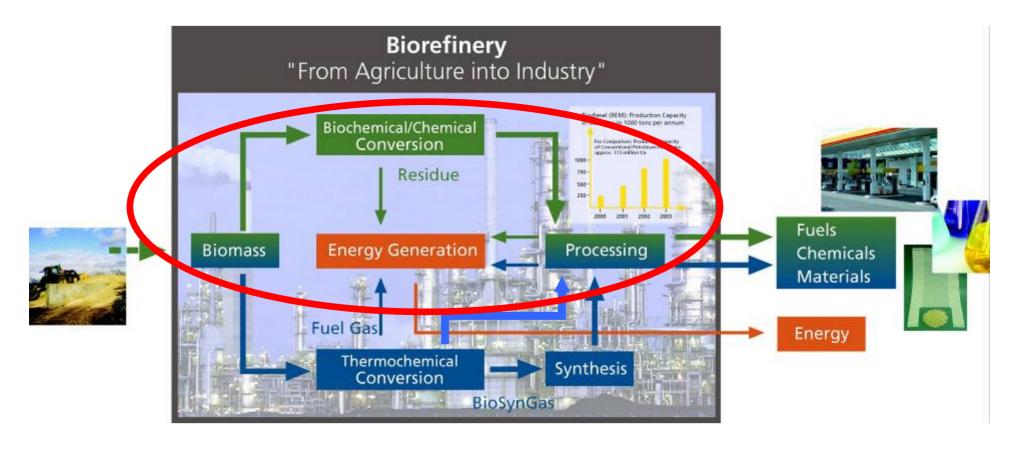
■ **Biorefinery**Products from Renewable Resources

UMSICHT

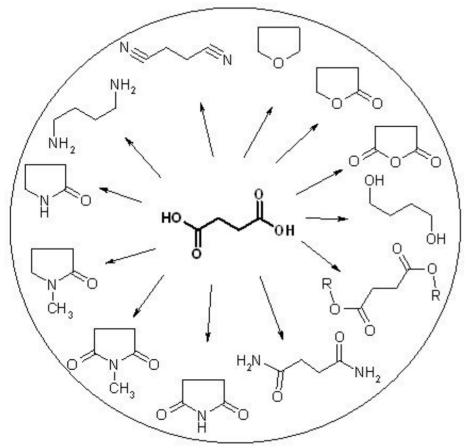
- Matfunc Functionalized Materials, Membranes and Particles
- Modular Energy Technologies
 Flexible Solutions for Sustainable Energy Systems
- Information Networks for Process and Energy Technology Utilization of Dispersed Know-how in Value Chains

Key Research Area »Biorefinery«

Products made from Renewable Resources

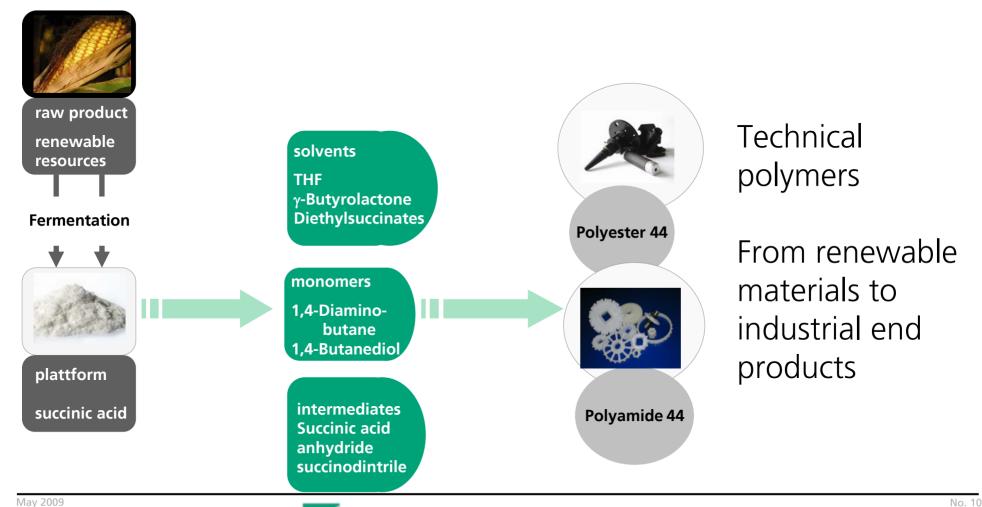

Vision:

20 % of all chemicals, materials and fuels will be generated from renewable resources in biorefineries in the year 2020!



Two-Platform-Biorefinery

Succinic Acid as a Platform Chemical



- Succinic acid from renewable resources (sugar, starch) by anaerobic fermentation
- Fermentation consumes CO₂
- Commodities by chemical conversion (preservative, defrosting agent, solvents, monomers for esters/amides)
- Performance Plastics: Polyamide 44
 (temperature resistant, impact resistant, scratch resistant gearwheels, hard covers)

Succinic Acid – Process Network

UMSICHT

Fraunhofer

"Biorefinery" Demonstration Plant: Energy

- Input
- manure4 000 m3/a
- organic residues5 000 t/a
- waste water 1 000 m³/a
- agricultural products2 000 t/a

- Output
- electricity250 kW2000 MWh/a
- heat370 kW2960 MWh/a
- liquid fertiliser 11 000 t/a

• digester size: 1 000 m³, biogas production: 120 std. m³/h

"Biorefinery" Demonstration Plant: Heat Utilization

- Input
- manure4 000 m3/a
- organic residues5 000 t/a
- agricultural products2 000 t/a
- waste water 1 000 m³/a

- Output
- electricity250 kW2 000MWh/a
- heat370 kW2 960MWh/a
- liquid fertiliser 11 000 t/a

• digester size: 1 000 m³, biogas production: 120 std. m³/h

Pilot-ORC (100 kW_{el}) for Gasengines

- Plant premounted
- approx 4000 h of operation
- efficiency under optimization

"Biorefinery" Demonstration Plant: Materials

- Output
- electricity250 kW2 000MWh/a
- heat 370 kW 2 960 MWh/a
- liquid fertiliser 11 000 t/a

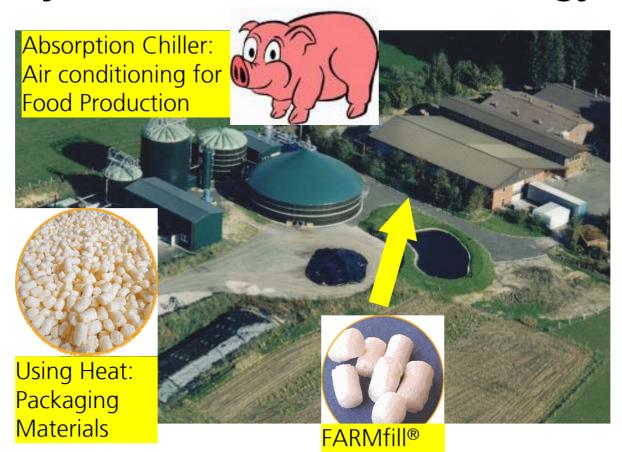
• digester size: 1 000 m³, biogas production: 120 std. m³/h

FARMfill® - Technical biobased Packaging Systems

- Chips
- Blister
- Decorations
- Formed Foams

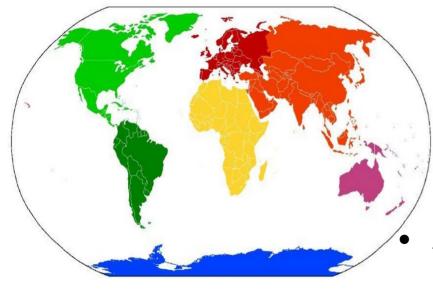
A world of tools

- Natural tinker material Cornbased
- Biodegradable
- Coloured with natural food colours
- Turns adhesive by contact with water



"Biorefinery" Demonstration Plant: Energy & Materials

- Input
- manure4 000 m3/a
- organic residues5 000 t/a
- agricultural products2 000 t/a
- waste water
 1 000 m³/a


- Output
- electricity250 kW2 000MWh/a
- heat 370 kW 2 960 MWh/a
- liquid fertiliser 11 000 t/a

• digester size: 1 000 m³, biogas production: 120 std. m³/h

On the use of land for biomass production

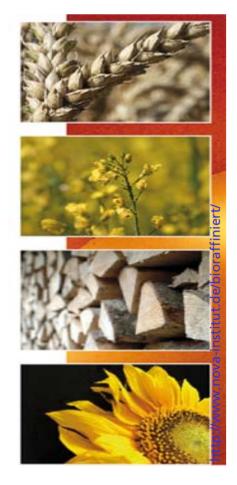
- World uses 1400 Mio ha for crop production
 - About 100 Mio ha for non-food/feed
 - Rubber 8 Mio , Coffee 10 Mio , Cotton 35 Mio, Tobacco 3,8 Mio, Fuels 25 Mio
 - And many others (tea, cocoa, sisal, hemp, ornamental plants)
 - About 3000 Mio ha used for pastures
 - More land for 2 Mio t of wool than for 700 Mio t of corn

Data from Willy de Greef, Secretary General, Europa Bio

Priority list on the use of land

Food Feed Biodiversity Materials Energy

Complex interdependencies require new agricultural, technical and social approaches


Byproducts from food/feed as chemical raw materials

Energy use of biobased products at the end of their life cycle

Summary and Concluding Remarks

- Integration of energy production, fuel and chemical production
- Production of different products for different markets
- Creating and production of first marketable Products
- Solving problems in key-technologies (catalysis, biotechnology, downstream processing, process integration...)
- Agricultural production system and logistics have to be considered
- New concepts have to be examined by LCA

Closing Remark

Biorefining is not a topic for Lonely Wolves

but cooperation is needed

THANK YOU FOR YOUR ATTENTION!

