

Logistics for 2nd Generation Biofuels

2nd Latin American Congress Biorefineries, Materials and Energy May 4^{th –} 6th 2009, Concepción

Prof. Dr. F. Schultmann, Dr. M. Fröhling, Dr. P. Kerdoncuff, Prof. Dr. O. Rentz Institute for Industrial Production (IIP), Universität Karlsruhe (TH) / Karlsruhe Institute of Technology

Forschungszentrum Karlsruhe

in der Helmholtz-Gemeinschaft

Universität Karlsruhe (TH)

Forschungsuniversität • gegründet 1825

www.kit.edu

- The role of logistics in the development of Biomass-to-liquid fuel (BtL) production processes
- Evaluation of logistical scenarios for BtL fuel production
- Methodological approach: Facilitiy location planning to evaluate logistical concepts for BtL production
- Case study Baden-Württemberg: Results of the scenario analyses

Conclusions

Exemplary biomass utilisation paths

Biomass-to-liquid fuel production

Emerging Technology

Advantages

- n No direct competition with food chain
- n Use of waste materials (straw, wood residues); whole crops
- n Fuel specifications adaptable to specific needs ("Designer fuels")

Determinative factors of the biomass logistics

Operating in a natural environment

- Spatial distribution
- Comparable small yield per acreage
- Principle of sustainability limits the amounts that can be harvested
- Seasonal supply variability

Dealing with wood

- Comparable high water content
- Comparable low density for certain assortments
- Comparable low market value of mass assortments

Organisational aspects

- Numerous owners
- Earnings not only objective of the owner
- Communication essential

(Schweinle/Fröhling 2008)

Process chain of a BtL-concept

Biomass supply (harvesting)	Transport and preparation	 Gasification – 	Gas cleaning	→ Synthesis —	Product end preparation
Wood (residues) Straw Maize 	Transport by tractor (short distance) Transport by truck (long distance) Other means of transport Pyrolysis Drying Milling	Fixed bed reactor Fluidized bed reactor Entrained flow reactor	Cyclone Tar cracker Washer Guard beds 	Fischer- Tropsch synthesis Methanol synthesis 	Hydrocracking Distillation

Central and decentral biomass preparation and transport

Central biomass preparation & transport:

- Smaller specific investment due to scale-up effects
- Higher transportation load and costs
- Higher environmental impact of the transport

Decentral biomass preparation & transport:

Methodological approach

Reference configuration

Modelling of material and energy flows

Estimation of material and energy flows

- Material and energy flow modelling using process simulation
- Results: Input and output flows and characteristic dimensions of aggregates

Main material and energy flows for wood residues and straw

Estimation of investments and production costs Techno-economic assessment

Cost estimation for an industrial scale BtL plant in Germany

Sources : Rentz , Kerdoncuff, Froehling , and Calaminus (2006); Kerdoncuff (2008)

	Residual wood	Residual straw
Overall costs per year [Mio. €/a]	166,8	7 152,62
Total production of FT-fuels [t]	120.000,0	0 114.000,00
Production costs [€/I FT fuel]	1,0	6 1,02

Estimation of environmental impacts

Emissions

- Methodology for life cycle assessment (LCA) according to the european standard DIN EN ISO 14040 and 14044
- Goal and scope definition for life cycle inventory analysis

Selection of adequate impact categories, e.g.

- Climate change
- Eutrophication
- Acidification
- Life cycle impact assessment (allocation of material and energy flows to the corresponding impact categories and conversion to indicator values, e.g. CO2 equivalents)

Location and logistics planning

- Problem structure: 2-staged capacitated Facility-Location-Problem (FLP)
- **Objective:** Minimisation of the decision relevant costs along the process chain between the biomass production areas and the Fischer-Tropsch (FT) Synthesis Plant

Constraints:

- 1 location for the FT unit
- Limited availability of biomass in each location (district / community)
- Limited capacity of the preparation units
- Transport distances between the districts and communities

• ...

A facility location planning model for BtL-concepts (1)

Minimisation of the decision relevant costs of the production chain from the biomass supply to the synthesis

MIN

 $\sum_{h \in H} \sum_{i \in I} \sum_{k \in K} p_{hk} \cdot x_{hik}^{bm}$ + $\sum_{h \in H} \sum_{i \in I} \sum_{k \in K} c_{hik}^{bm, truck} \cdot x_{hik}^{bm}$ + $\sum_{i \in I} f_i^{prep} \cdot z_i^{prep}$

+ $\sum_{h \in H} \sum_{i \in I} \sum_{k \in K} c_{ik}^{var, prep} \cdot x_{hik}^{bm}$

+ $\sum_{i \in I} \sum_{j \in J} c_{ij}^{slur,truck} \cdot x_{ij}^{slur}$

biomass supply (purchasing)

short distance transport biomass (truck), supplier to preparation

investment biomass preparation units

operation of biomass preparation units

long distance transport slurry (truck), preparation to synthesis

Symbols (excerpt):

Sets:

possible biomass supplier possible preparation unit possible synthesis unit type of biomass

Parameters:

$C_{hik}^{bm,truck}$	transport costs (truck) for biomass [€/t*km]
$C_{ik}^{var, prep}$	variable costs for preparation [€/t]
$C_{ij}^{slur,truck}$	transport costs (truck) for slurry [€/t*km]
f_i^{prep}	investment dependent fix costs [€]
p	price [€/t]
Variables:	
x_{hik}^{bm}	transported biomass [t]
x_{ij}^{slur}	transported slurry [t]
٢	1: unit is built

 Z_i^{prep}

0: unit is not built

A facility location planning model for BtL-concepts (2)

Subject to (excerpt):			Symbols (excerpt):
$\sum_{i \in I} x_{hik}^{bm} \leq \overline{x}_{hk}$	$\forall h, k$	limited availability of biomass of type <i>k</i>	Sets: $h \in H$ $i \in I$ possible biomass supplier $i \in I$ possible preparation unit
$y_{ik}^{prep} = \sum_{h \in H} lpha_{hk} \cdot x_{hik}^{bm} \cdot eta_k$	$\forall i,k$	production of slurry from bio- mass <i>k</i> at location <i>i</i>	$j \in J$ possible synthesis unit $k \in K$ type of biomass
$y_i^{prep} = \sum_{k \in K} y_{ik}^{prep}$	$\forall i$	total mass of slurry produced at location <i>i</i>	Parameters: α_{hk} share of water β_k production coefficient
$y_{ik}^{prep} \ge \underline{y}_{k}^{prep} \cdot z_{i}^{prep}$	$\forall i,k$	lower capacity limit in the preparation unit	$ \begin{array}{c} M^{prep} & \begin{array}{c} \text{maximum number of} \\ \text{preparation units} \\ \\ \overline{x}_{hk} & \begin{array}{c} \text{maximum available} \\ \text{amount of biomass [t]} \end{array} \end{array} $
$y_{ik}^{prep} \leq \overline{y}_k^{prep} \cdot z_i^{prep}$	$\forall i,k$	upper capacity limit in the preparation unit	$\frac{y_{k}^{prep}}{\sum_{k}}$ lower capacity limit in preparation unit [t]
$\mathcal{Y}_{i}^{prep} = \sum_{j \in J} x_{ij}^{slur}$	$\forall i$	mass balance preparation	$\overline{\mathcal{Y}}_{k}^{prep}$ upper capacity limit in preparation unit [t] Variables:
$\sum_{i \in I} z_i^{prep} \le M^{prep}$		limitation of the max. number of preparation units	x_{hik}^{bm} transported biomass [t] x_{ij}^{slur} transported slurry [t] y_i^{prep} y_{ik}^{prep} slurry productionpreparation unit

15 | Institute for Industrial Production (IIP) | Schultmann/Fröhling/Kerdoncuff/Rentz

1: unit is built

0: unit is not built

 Z_i^{prep}

A facility location planning model for BtL-concepts (3)

			Or make a lost (
$y_j^{syn} = \sum_{i \in I} x_{ij}^{slur}$	$\forall j$	mass of slurry, used in synthesis unit <i>j</i>	Symbols: (Sets:	excerpt)
			$h \in H$	possible biomass supplier
$V_i^{syn} \ge V_i^{syn} \cdot z_i^{syn}$	$\forall j$	lower capacity limit of the	$i \in I$	possible preparation unit
	U	synthesis unit	j _e J	possible synthesis unit
$v_i^{syn} \leq \overline{v}_i^{syn} \cdot Z_i^{syn}$	$\forall j$	upper capacity limit of the	к _∈ К	type of biomass
		synthesis unit	Parameter	'S:
$\sum y_j^{syn} = y^{syn,capacity}$		mass balance synthesis	М ^{syn}	maximum number of synthesis units
j∈J			$\underline{\mathcal{Y}}_{j}^{syn}$	lower capacity limit in synthesis unit [t]
$\sum_{i \in I} z_j^{syn} \le M^{syn}$		limitation of the maximum	$\overline{\mathcal{Y}}_{j}^{syn}$	upper capacity limit in synthesis unit [t]
jes			$y^{syn,capacity}$	total fuel production [t]
x_{hik}^{bm} , x_{ij}^{slur} , y_i^{prep} , $y_i^{syn} \ge 0$	$\forall h, i, j, k$	nonnegativity of the	Variables:	
			$x_{_{hik}}^{_{bm}}$	transported biomass [t]
$z_{i}^{prep}, z_{i}^{syn} \in \{0,1\}$	$\forall i. i$	definition of the binary	x_{ij}^{slur}	transported slurry [t]
	,	variables	${\cal Y}_i^{prep}$	produced slurry [t]
			${\cal Y}_j^{syn}$	produced fuel [t]
			_ prep _ syn _	∫ 1: unit is built
			z_i , $z_j = -$	0: unit is not built

Universität Karlsruhe (TH) Forschungsuniversität • gegründet 1825

Case study Baden-Württemberg: Data basis (excerpt)

- Results of
 - the mass and energy flow balancing and
- the economic and ecological assessment of the reference process chain for
 - Wood residues 1.7*10⁶ t (50 % H₂O)
 - Straw 1.0*10⁶ t (15 % H₂O)

Distance matrix (87 locations for biomass collection)

		1	2	3	4	5	
1	Albstadt	0	152	190	96	84	
2	Auenwald		0	148	247	146	
3	Baden-Baden			0	285	42	
4	Bad Wurzach				0	268	
5	Baiersbronn					0	
							0

Quantity of biomass in each community

	Wood residues (t wet)	Straw (t wet)
Albstadt	48,243	10,831
Auenwald	41,873	7,481
Baden-Baden	48,763	3,416
Bad Wurzach	32,053	6,532
Baiersbronn	67,093	7,910

Considered scenarios

Biomass	Wood residues		Straw
Concept	Central biomass preparation	Dec 2, 1	central biomass preparation with 0, 20 locations for the preparation units

Sensitivity analyses for following parameters

- Cost of biomass production
- Cost of biomass transport

Exemplary results: Scenarios "wood residues"

Results scenario "central biomass preparation "

Location of biomass	Location of the synthesis	Quantity of wood tranported (wet t)	Distance (km)
Albstadt		48.243	63
Baden-Baden		48.763	112
Baiersbronn	Schramberg -	67.093	42
Balingen		45.773	48
Balgheim		48.243	42
Buchenbach		41.678	67
Donaueschingen		60.203	38

Total costs of the production chain: 165 • 10⁶ Euro

Transport: 11.4 • 10⁷ t • km

Results for the scenario "decentral biomass preparation (10 locations)":

- Synthesis plant in Epfendorf
- 10 pyrolysis plants in: cf. Table
- Total costs of the production chain: 185 • 10⁶ €
- Transport: 6.6 10⁷ t km

Number	Biomass preparation location
1	Gondelsheim
2	Baiersbronn
3	Ebhausen
4	Rottenburg am Neckar
5	Hausach
6	Albstadt
7	Unterkirnach
8	Tuttlingen
9	Ühlingen
10	Epfendorf

Exemplary results: Scenarios "straw"

Results scenario "central biomass preparation"

Location of biomass	Location of the synthesis	Quantity of wood tranported (wet t)	Distance (km)
Albstadt		10.820	136
Auenwald		7.473	86
Bad Wurzach		6.525	194
Balingen	Berglen -	7.152	118
Balgheim		10.820	147
Binau		17.638	85
Birkenfeld	F	4.420	87

Total costs of the production chain:157 • 10⁶ Euro

Transport: $9.4 \cdot 10^7 t \cdot km$

Results for the scenario "decentral biomass preparation (10 locations)":

- Synthesis plant in Murr
- 10 pyrolysis plants in: cf. Table
- Total costs of the production chain: 156 • 10⁶ €
- Transport: 8 10⁷ t km

Number	Biomass preparation location
1	Lauda-Königshofen
2	Neuenstadt am Kocher
3	Gerabronn
4	Gondelsheim
5	Schwäbisch Gmünd
6	Rottenburg am Neckar
7	Dornstadt
8	Ehingen
9	Veringenstadt
10	Murr

Exemplary results:

Scenarios "mixed raw material" central biomass preparation –supply

(7 preparation units for wood residues and 3 preparation units for straw)

Results for the scenario "central biomass preparation – mix wood residues and straw" (1.360.000 wet t wood residues, 200.000 t straw)

Location of biomass	Location of the synthesis	Quantity of wood transported (wet t)	Quantity of straw transported (wet t)	Distance (km)
Albstadt	Epfendorf	48,243	10,820	48
Baiersbronn		67,093	7,902	48
Balingen		45,773	7,152	33
Balgheim		48,243	10,820	29
Buchenbach		0	2,908	97
Denkendorf		0	6,796	92
Donaueschingen		60,203	11,819	43

Total costs of the production chain: 160 • 10⁶ Euro

Transport: 7.8 • 10⁷ t • km

Sensitivity analyses – Costs of biomass supply

Million €

 \rightarrow stability of the solution for parameter changes

Sensitivity analyses – Costs of biomass transportation

Million €

Conclusions

- The contribution shows the influence of the choice of biomass and the logistical configuration on the results of an economic assessment
- For the state of Baden-Württemberg
 - A decentral concept with straw as raw material appears to be favorable from an economic point of view
 - A decentral concept with wood residues as feedstock has the minimum transport load in the compared scenarios
- Sensitivity analyses show stability of solutions for parameter changes
- Biomass costs make up approx. 30 % of the total cost per annum

Outlook

- Chile has large biomass potentials
 - 15.6 million ha of forest (13.4 million ha native forests, 2.2 million ha plantations)
 - 3.88 million tons (DM) of residual straw
- Questions of biomass supply, logistics and costs need to be answered
- BtL concepts might be an attractive option for Chile, but a detailed assessment is necessary
- The presented approach is transferable to Chile to assess a realization under Chilean conditions
- BtL should not be the only investigated option, a comparison with further utilization pathways (e.g. SNG, biorefineries) should be carried out
- Adaptation of the Model considering multiple utilization pathways may help to develop regional biomass utilization concepts

Thank you for your attention!

Prof. Dr. F. Schultmann, Dr. M. Fröhling, Dr. P. Kerdoncuff, Prof. Dr. O. Rentz Institute for Industrial Production (IIP) Universität Karlsruhe (TH) / Karlsruhe Institute of Technology Hertzstraße 16 D-76187 Karlsruhe, Germany

- T: +49 (0) 721 608 4460
- F: +49 (0) 721 758909

E: {frank.schultmann; magnus.froehling; pierre.kerdoncuff; otto.rentz}@kit.edu

www.kit.edu

