

Universidad del Bío-Bío

Facultad de Ingeniería Departamento de Ingeniería en Maderas Programa Doctorado Ciencias e Industrias de la Madera

"La fibra de corteza de Eucalyptus nitens y su aplicación como refuerzo en biomateriales termoplásticos"

Freddy Muñoz A*.1-2 fmunoz@tec.ac.cr

Paulina Valenzuela C.3 nvalenzu@ubiobio.cl

Aldo Ballerini A.4 aballeri@ubiobio.cl

William Gacitúa E.4 wgacitua@ubiobio.cl

- ¹ Profesor Adjunto, M.Sc. Escuela de Ingeniería Forestal. Tecnológico de Costa Rica, Cartago-COSTA RICA
- ² Dr. (c). Ciencias e Industrias de la Madera. DIMAD. Universidad del Bío-Bío, Concepción-CHILE * autor
- ³ M.Sc. Centro de Biomateriales & Nanotecnología. Universidad del Bío-Bío, Concepción-CHILE
- ⁴ Profesor Asociado, Ph.D. Depto. Ing. en Maderas. Universidad del Bío-Bío, Concepción-CHILE.

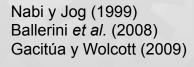
<u>Índice temático</u>

- Introducción
- Metodología & Resultados
- Conclusión general
- Referencias
- Agradecimientos

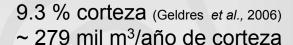
Introducción

Materiales compuestos (MC)

Crecimiento importante en EEUU, Europa y AL materiales alternativos e innovadores.


Motivado al <u>estudio de compatibilidad</u> y <u>uso de fibras naturales</u> como refuerzo en MC.

Generando <u>nuevos materiales</u> con ciertas características y aplicabilidad.


Caracterizar la fibra reforzante

Introducción

- VIII región consume
 7.6 millones m³/año de madera en rollo del género *Eucalyptus*
 - ~ 3 millones m³ *E. nitens (39.5%)*

¿nueva alternativa de uso para la corteza de **Eucalyptus nitens**?

- ✓ Uso clásico: energía
- ✓ Redefinir uso residuos Velásquez (2006)
- ✓ Material lignocelulósico
- ✓ Espesor considerable
- ✓ Recurso renovable
- ✓ Valor agregado
- ✓ Aprovechamiento recurso forestal
- ✓ Adhesión corteza/madera Einspahr et al. (1984)

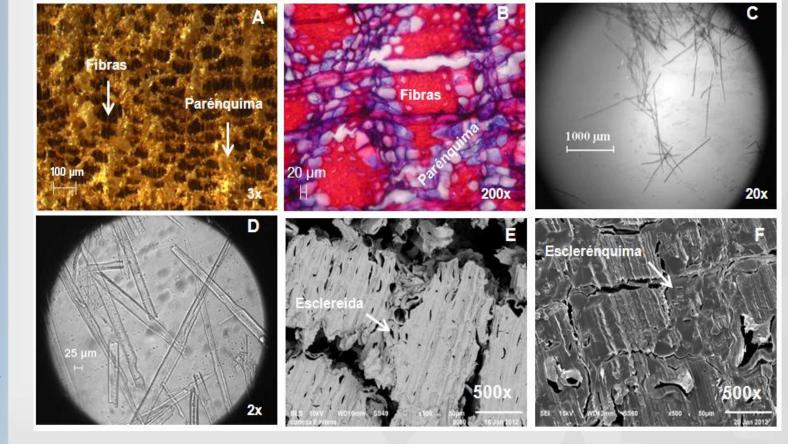
Alternativa de nuevo producto I+D 3^{era} especie

Caracterización corteza E. nitens (Muñoz et al. 2013)

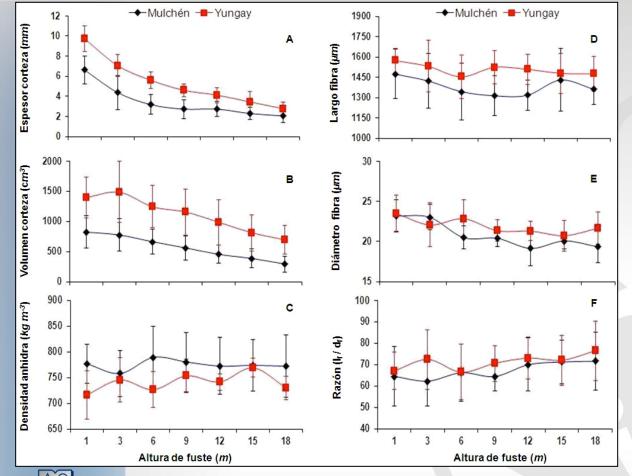
Espesor, volumen y densidad corteza, If, df, razón If/df

- Procedencia: Región Bío-Bío plantaciones 12 años Forestal Mininco S.A. (Fundo Rucamanqui)
- 2 sitios x 6 familias x 7 alturas de fuste x 2 árboles (168 rodelas)

Fotos: F. Muñoz (2011)

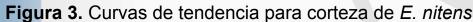

Figura 2. Muestreo de rodelas con corteza de E. nitens

Caracterización corteza E. nitens Anatomía y morfología


Macerado de astillas (Jane, 1970)

1680 fibras para diámetro y largo de fibra Jorge et al. (2000) e Irgatúa et al. (2003)

Figura 1. Macro y microfotografías de la estructura anatómica y morfología de la corteza de *Eucalyptus nitens*: **A y B.** Plano transversal. **C.** Largo fibra. **D.** Diámetro fibra. **E.** Microscopía electrónica (SEM) sin resina epóxica. **F.** Microscopía electrónica (SEM) con resina epóxica, llenando los espacios vacíos de la estructura celular de la corteza.


<u>RipoloboteM</u> & resultados

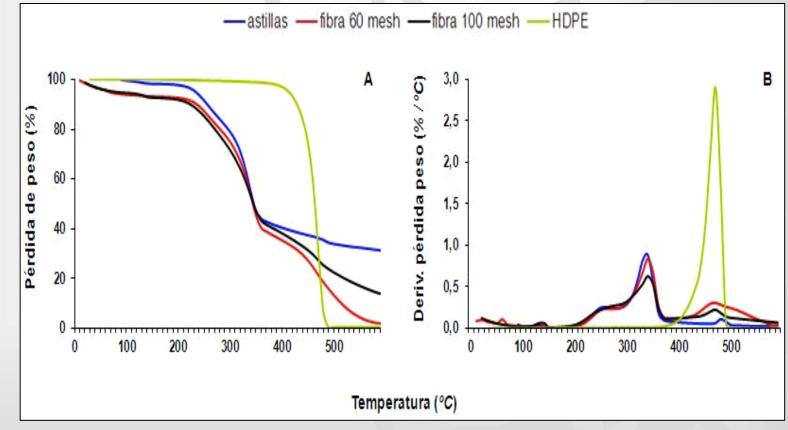
Efectos significativos

Sitio (E, V, D_o , I_f y d_f)

Familia (todos)

Altura (E, V y d_f)

Madera E. nitens

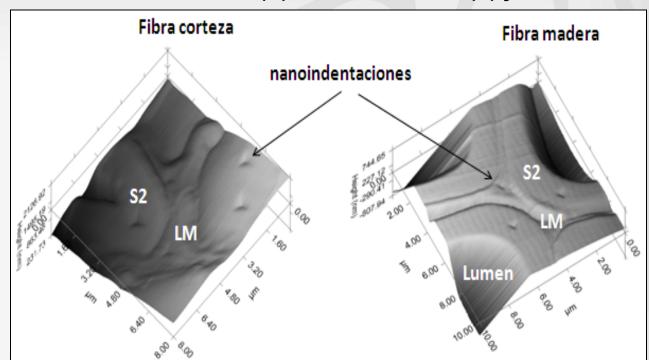

Kibblewhite et al. (2000)	Rozas (2002)	
15-16 años	10-11 años	
I _f promedio: 860 μm	$D_o = 542 \text{ kg/m}^3$	
d _f promedio: 13.2 μm		
Razón I _f /d _f = 65.2		

•		
>	Parámetro corteza <i>E. nitens</i>	promedio
	Espesor (mm)	4.4
	Volumen (cm ³)	838
	Densidad anhidra (Kg/m³)	757
	Largo fibra (µm)	1443
	Diámetro fibra (µm)	21.7
	Razón I/d.	69.1

Caracterización corteza E. nitens

Ensayo TGA

- Equipo TGA Q-50 (CIPA)
- 3 tamaños de partícula, 3-6 mg, 25-600°C, 10°C/min (Yemele et al., 2010)
- HDPE IVOREX 7000F (pellet)


Caracterización corteza E. nitens

Ensayos nanoindentación (Muñoz et al., 2012)

Tribolndenter HYSITRON TI-900

2 sitios 2 familias

Dureza (H), modulo elástico (E) y razón ductilidad (E/H)

650 nano-indentaciones

Figura 5. Imagen 3D de nanoindentaciones en ML y capa S2 fibras de madera y corteza E. nitens

Corteza						Madera					
Н	(GPa)	E (G	(Pa)	E,	/H	H (GPa)	E (G	(Pa)	E	/ H
<i>S2</i>	ML	S2	ML	S2	ML	S2	ML	S2	ML	S2	ML
0.26	0.33	10.81	7.10	43.10	21.63	0.31	0.34	12.52	7.05	41.46	21.15

Efectos significativos:

Sitio $(H_{S2} E_{ML} H_{ML})$

Tipo fibra $(E_{S2} H_{S2})$

Procesamiento corteza *E. nitens*

Metodología & resultados

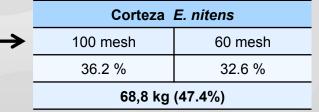
Corteza en trozos

145.3 kg

Alturas (1, 3, 6, 9 y 12 m)

CH ~ 15%

Molido/remolido 134.6 kg Rend. ~ 92.6%



Proceso tamizado

Finos < 100 mesh	100 mesh	60 mesh	≥ 40 mesh	total
35.4	36.2	32.6	13.4	117.6 kg
24.4 %	25.0 %	22.4 %	9.2 %	81.0%

Material para extrusión

Proceso de extrusión

Metodología & resultados

Fibra corteza + HDPE F00952

Extrusora doble tornillo MILACRON TC-35 T °C= 170-180 / rpm= 4

Perfiles rectangulares de biomaterial compuesto

Compuesto	· · · · · · · · · · · · · · · · · · ·	ión 70/30 E/fibra	Agente acople	Lubricante	Total batch
	HDPE (kg)	fibra seca (kg)	(%)	(%)	(kg)
C1	3,50	1,50	0,00	0,00	5,00
C2	3,50	1,50	5,00	2,50	5,00
Proporción 60/40 Compuesto HDPE/fibra		Agente acople	Lubricante	Total batch	
	HDPE (kg)	fibra seca (kg)	(%)	(%)	(kg)
C3	3,00	2,00	0,00	0,00	5,00
C4	3,00	2,00	5,00	2,50	5,00

Struktol TPW 104 (lubricante) y Licocene PE MA 4351 TP (agente acoplante)

Algunas propiedades

1,20

1,15

1,10

1,05

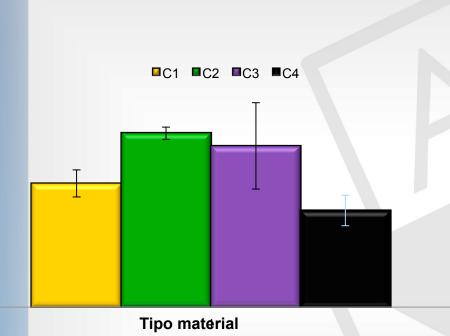
1,00

0,95

0,90

0,85

UNIVERSIDAD DEL BÍO-BÍO La Universidad de la Región del Bío-Bío


Acreditada por 5 años 2009/2014

Densidad g cm⁻³

zobsiluzer & sipoloboteM

Determinación de la densidad para los diferentes materiales compuestos (ASTM D792-00)

 $1.12 > 1.10 > 1,09 > 1.04 \text{ g/cm}^3$ C2 C3 **C1**

1.09 g/cm³

Módulo elástico en tensión (E_t) promedio para los distintos materiales ensayados (a)

Tipo material	E _t (GPa)	Fibra corteza	Tamaño fibra (mesh)	Contenido corteza (%)	Referencia
C1	0.917	E. nitens	60-100	30	(a)
C2	0.982	E. nitens	60-100	30	(a)
C3	0.976	E. nitens	60-100	40	(a)
C4	1.343	E. nitens	60-100	40	(a)
BSB	1.989	Spruce	60-80	50	Yemele et al. (2010)
BSB	2.352	Spruce	60-80	60	Yemele et al. (2010)
TAB	1.720	Aspen	60-80	50	Yemele <i>et al.</i> (2010)
TAB	1.722	Aspen	60-80	60	Yemele <i>et al.</i> (2010)
Madera <i>E. nitens</i>	2.657	(-)	(-)	(-)	(a)
HDPE	1.10	(-)	(-)	(-)	(a)
HDPE	1.15 –1.19	(-)	(-)	(-)	Klapperich et al. (2001) Moreno (2012)

Ensayo de tensión (ASTM D638-00)

60 mesh= 0.250 mm= 0.00025 um / 80 mesh= 0.177 mm= 0.00018 um / 100 mesh= 0.149 mm= 0.00015 um

⁽a) Zwick/Roell Z020 y software testXpert ®II V3.2

Conclusión general

→ De acuerdo a los resultados presentados y aunque se encontraron diferencias estadísticas significativas, es posible establecer que:

Las magnitudes y la variabilidad de las propiedades físicas, morfológicas, térmicas y nano-mecánicas de la fibra de corteza de $E.\ nitens$, junto con los resultados obtenidos en el proceso de molido, tamizado, extrusión, densidad y módulo elástico en tensión (E_t) del MC, están dentro de rangos que podrían justificar su aplicabilidad como fibra de refuerzo en matrices termoplásticas.

Referencias:

Ballerini, A., Bustos, X., Ramos, M., Wechsler, A. 2008. Paper SW-05. http://www.swst.org/meetings/AM08/proceedings/WS-05.pdf

Einspahr, D; Van Eperen, R; (Harder) Fiscus, M. 1984. Wood and Fiber Science 16(3): 339-348

Gacitúa, W., Wolcott, M. 2009. Maderas Ciencia y Tecnología 11(3): 217-231

Geldres, E., Gerding, V., Schlatter, J. 2006. Bosque 27(3): 223-230

Igartúa, D; Monteoliva, S; Monterubbianesi, M, Villegas, M. 2003. IAWA Journal 24(2): 173-184

INFOR. 2008. http://www.infor.cl/es/series-y-estadisticas.html

Jane, F. 1970. The structure of wood. Eds. Adam & Charles Black. 478p

Jorge, F; Quilhó, T; Pereira, H. 2000. IAWA Journal 21(1): 41-48

Klapperich, C., Komvopoulos, K., Pruitt, L. 2001. Journal of Tribology 123: 624-631

Kibblewhite, R; Ridell, M; Shelbourne, C. 2000. New Zealand Journal of Forestry Science 30(3): 458-474

Muñoz, F., Valenzuela, P., Gacitúa, W. 2012. Eucalyptus nitens: Nanomechanical properties of bark and wood fibers. Applied Physics A: Material Science & Processing. 108(4): 1007-1014

Muñoz, F., Ballerini, A., Gacitúa, W. 2013. Variabilidad de las propiedades físicas, morfológicas y térmicas de la fibra de corteza de *Eucalyptus nitens. Maderas Ciencia & Tecnología*. 15(1). DOI 10.4067/S0718-221X2013000100002

Nabi, D., Jog, P. 1999. Advances in Polymer Technology 18(4): 351-363

Rozas, C. 2002. Resultados Tecnológicos Proyecto FONDEF D98I1018. Universidad del Bío-Bío. Facultad de Ingeniería. Departamento de Ingeniería en Maderas. 108p.

Velásquez, B. 2006. Ecosistemas 15(1): 77-86

Yemele, M., Koubba, A., Cloutier, A., Soulounganga, P., Wolcott, M. 2010. Composites Part A: Applied Science and Manufacturing 41(1): 131-137

Agradecimientos:

- Centro de Biomateriales & Nanotecnología <u>www.cbnubb.cl</u>
- Laboratorio de anatomía de la madera (DIMAD / UBB)
- → Laboratorio de adhesivos (DIMAD / UBB)
- Centro de Investigación en Polímeros Avanzados (CONICYT REGIONAL/CIPA/R08C1002)
- Laboratorio diseño y tecnología de la madera (UBB)
- Pabellón tecnológico de la madera (DIMAD / UBB)
- Forestal Mininco S.A.
- Aserradero Agroforestal Nahuelbuta S.A.
- →Tecnológico de Costa Rica (TEC), Organización de los Estados Americanos (OEA) y Programa de doctorado en Ciencias e Industrias de la Madera (DOCIMAD) del Depto. Ingeniería en Maderas de la Universidad del Bío-Bío, por el apoyo financiero de becas.

