Kraft pulps from Eucalyptus and Pinus radiata - raw materials for nanocellulose production and novel bioapplications

Gary Chinga Carrasco

PFI Biocomposites Norway

3er Congreso Iberoamericano sobre Biorrefinerías (CIAB)
4to Congreso Latinoamericano sobre Biorrefinerías
2do Simposio Internacional sobre Materiales Lignocelulósicos

Outline

□ Kraft pulp fibres morphology

- Eucalyptus and Pinus radiata
- □ Nanocellulose production
 - Chemical pre-treatments
- □ Characteristics of nanocellulose
 - Based on bleached and unbleached fibres

□ Printing

Functionalization and 3D printing

Kraft pulp fibres

□ Morphology

Advanced microscopy and image analysis

Eucalyptus

Pinus radiata

Kraft pulp fibres

□ Morphology

Advanced microscopy and image analysis

Eucalyptus

Pinus radiata

Wood nanocellulose

Characterisation

- Proper utilization of a given fibrillated material and its properties requires an extensive understanding of the chemical and structural components and their morphology
- □ But how are nanocelluloses characterised?
 - ➤ Nano-characterisation?

Images from the PFI advanced nano-characterisation training course 2012

Chinga-Carrasco,, Averianova, Kondalenko, Garaeva, Petrov Leinsvang Karlsen. Micron 56:80-84, 2014

Optical quantification

□ Samples for structural assessments

- Suspensions/casting, 0.2 %
- Grammage 20 g/m2
- Drying 3-5 days

Optical quantification

Digital images of nanocellulose films

Acquired with a conventional desktop scanner

Eucalyptus P. RadiataEucalyptus P. RadiataEucalyptus P. RadiataEucalyptus P. RadiataNo pretreatmentTempoNo pretreatmentTempo3 passes3 passes5 passes5 passes

Optical quantification

Light transmittance measured with scanners

- The higher the fibrillation the higher the light transmittance
- Residual fibres clearly observed in digital images

Chinga-Carrasco, Micron 48: 42-48, 2013

□ The yield depends on the fiber type

Nanofibrils are revealed by nano-characterization methods

- AFM
- Chemical pre-treatment yields an homogeneous surface

Nano-porous structures

- FE-SEM Quantification of nanofibril width and porosity
- Resolution, 1 nm. Surfaces without coating!

Microscopy and Microanalysis 17(4): 563-571 (2011).

Mechanical

TEMPO pretreatment

PF

□ Cellulose nanofibrils from *P. radiata*, used as reinforcement in paper filled with CaCO₃

Characteristics of nanocellulose films Based on bleached and unbleached pulp fibres

Lignin-containing fibres yield a higher nanofibrillation

- Form smoother films
- Are less hydrophilic

	Contact angle	LP-roughness (µm)	
	(degrees)		
Unbleached, 3 passes	61 ±4	0.33 ±0.07	
Bleached, 3 passes	40 ±3	0.56 ±0.08	and and and a
Unbleached, 5 passes	58 ±3	0.26 ±0.06	5 ^{ml} 6 ^{ml} 605 ^{kb}
Bleached, 5 passes	38 ±2	0.63 ±0.05	Cot 605 62
Unbleached			cot G2 000
carboxymethylation, 2 passes	74 ±4	0.24 ±0.05	G2'
Bleached carboxymethylation, 2			
passes	54 ±3	0.16 ±0.01	

Lignin-containing fibres yield a higher nanofibrillation

- Form dense films with low oxygen permeability
- But the chemical-pretreatment has a larger effect on bleached fibres

- Lignin-containing fibres yield a higher nanofibrillation
 - Form stronger films
 - But the chemical-pretreatment has a larger effect on bleached fibres

Series	Tensile strength (MPa)	Elongation (%)	
Unbleached, 3 passes	145 ±13	12.2 ±1.6	
Bleached, 3 passes	118 ±10	12.3 ±1.2	
Unbleached, 5 passes	163 ±16	13.9 ±3.3	For col cos
Bleached, 5 passes	137 ±18	17.8 ±1.2	Col Cos Ga
Unbleached carboxymethylation, 2			Con 62/ Con
passes	162 ±31	9.9 ±4.8	62'
Bleached carboxymethylation, 2 passes	239 ±25	17.1 ±7.5	

□ Nanocellulose films

 The more fibrillated the material is the higher the strength

Chinga-Carrasco, Kuznetsova, Garaeva, Leirset, Galiullina, Kostochko, Syverud. J. Nanoparticle research 14:1280 (2012)

Biomedical applications

- Nanocellulose from wood has potential in wound dressings
- □ The assessment of biocompatibility requires direct contact with living tissue
 - Cytotoxicity and biocompatibility
 - Requires ultrapure nanocellulose materials
 - LPS levels lower than 100 endotoxin units/g

\Box LPS < 50 EU/g

□ Non-cytotoxic material

Biomedical applications

□ Microbiological testing

- A set of nanocellulose materials have been tested, including
 - Neat nanocellulose
 - Chemically-pretreated nanocellulose
- Nanocellulose may impair bacterial growth
- Further studies are being performed to explore the bacteriananocellulose interactions and biofilm formation

Functionalization by printing

□ Nanocellulose films

- high oxygen barrier properties
- Strong
- Translucent
- Smooth
- Surface modification by printing

Great potential for adding functionality

Conductive structures printed on nanocellulose surfaces

Hydrogels

□ Nanocellulose can be modified to form functional structures

3D bioprinting of nanocellulose constructs

PFI 💓

Rees, Powell, Chinga-Carrasco, Gethin, Syverud, Hill, Thomas BioMed Research International. Article ID 925757 2014.

Hydrogels

□ Nanocellulose can be modified to form functional structures

- 3D bioprinting of nanocellulose constructs
- Tailor-made biocomposites for wound healing

Hydrogels

Macro-porous structures can be created through cryogelation and cross-linking

The gels are elastic and spongyRegain the shape

Conclusions

- A set of structural and chemical characterization methods have been established
- Various chemical pre-treatments have been applied to tailor-make the nanofibril morphology and surface chemistry
- New printing techniques have been demonstrated to functionalize nanocellulose
- Nanocellulose has great potential for biomedical applications

The Research Council of Norway is acknowledged for funding part of this work through the Grants

- 193706 A Norwegian-Chilean Cooperation project as a step to develop novel bio-based materials and sustainable energetic solutions in Latin America;
- 196119 Nanofibril filters for environmental nanoparticles: Development of innovative protection against Nano-pollution;
- 219733 NanoHeal: Bio-Compatible Cellulose Nanostructures for Advanced Wound Healing Applications.

Follow us on electronic media: www.pfi.no

www.linkedin.com/company/paper-and-fibre-research-institute-pfi-

gary.chinga.carrasco@pfi.no