

Unidad Académica Juriquilla

Implementing an optimization strategy in real time to improve biological hydrogen production Juan E. Ramírez, Ixbalank Torres, <u>Germán Buitrón</u>

Laboratorio de Investigación en Procesos Avanzados de Tratamiento de Aguas

As energetic vector

Used in Biorefineries

Methanol productionProducts from syngas

INTENSIFIED INTEGRATED BIOREFINERY (IIBR)

- Conventional (96%)
- Reforming processes
- Pyrolysis (Biomass, Carbon)
- Gasification
- Electrolysis (4% H₂O)
- Biological
- Biophotolysis
- Photo-fermentation
- Bioelectrochemical systems
- Dark-fermentation

Waste

Dark fermentation

Stoichiometry Theoretical equation:

 $\textbf{C_6H_{12}O_6}~\textbf{+12H_2O} \rightarrow~\textbf{6CO_2}\textbf{+12H_2}$

(12 mol H₂/mol glucose)

Stoichiometry (*Clostridium* bacteria)

Thermophilic:

 $C_6H_{12}O_6\ + 2H_2O \rightarrow C_2H_4O_2\ + 2CO_2\ + 4H_2$: Acetic (4mol H_2/mol glucose)

Stoichiometry (*Clostridium* bacteria)

Mesophilic

 $\begin{array}{l} C_{6}H_{12}O_{6} \ + 2H_{2}O \rightarrow C_{2}H_{4}O_{2} \ + 2CO_{2} \ + 4H_{2} \colon \mbox{ Acetic } \\ (\ 4 mol \ H_{2}/mol \ glucose) \\ C_{6}H_{12}O_{6} \ + \ 2H_{2}O \rightarrow 2C_{4}H_{7}O_{2} \ + \ 2CO_{2} \ + \ 2H_{2} \colon \ \mbox{ Butiric } \\ (\ 2 mol \ H_{2}/mol \ glucose) \end{array}$

Side reactions

Methane CO2 + 4 H2 \rightarrow CH4 + 2H2O Solvents: acetone, ethanol, butanol

Inoculum

Pure culture

Clostridium acetobutylicum, C. butyricum, C. termocellum, etc

Enterobacter aerogenes, E. cloacae...

Escherichia coli

Consortium

- Viable for industrial application
- Robust against environmental changes

Factors influencing

Some factors affecting fermentative hydrogen production

- Inoculum (Lo et al., 2008; Jo et al., 2008)
- Substrate (Zheng et al., 2008; Lee et al., 2008)

(Chen et al., 2005; Das and Veziroglu, 2008)

▶ Temperature (Lin et al., 2008; Montes-Moncivais et al., 2007)

Granular sludge

Activated sludge

3

2,5

2

Inoculum

$AS \rightarrow 0.94 \text{ mmol}$

 $CM \rightarrow 1.69 \text{ mmol}$ $CO \rightarrow 1.29 \text{ mmol}$

Biomass retention

- Disperse growth: SS in the effluent

Thickness of biofilms

- Thin biofilms are more suitable for hydrogen production
- Thick biofilm developed a bacterial community oriented to the production of propionate

$C_6H_{12}O_6 + 2H_2 \rightarrow 2CH_3CH_2COOH + 2H_2O$

Inoculum preparation

Inoculum pretreatment

Heat pretreatment

Grounded and sieved (0.01 cm diameter)

Generation of hydrogen producing bacteria with a more viable method

HRT and pH were used as the pressure selection inducers:

An UASB reactor was used.

The pH was controlled at 5.0 ± 0.1 and HRT was fixed at 6 h

Mesophilic conditions (35°C) and

 7.3 ± 0.4 gVSS/L

Factors influencing

Hernández et al., (2012)

Tequila vinasses

pH:	3.88±0.1
Sugars:	7.0 g/L
Sulphate:	1.4 g/L
Phenols:	57 mg/L

- Once a biohydrogen production process has been developed, the operational conditions have to be optimized in order to achieve a desirable performance
- ✓ Limited data on optimization strategies:
 - 1. Model predictive control strategy: asymptotic online observer Aceves-Lara et al., (2010)
 - 2. Fuzzy control Huang et al., (2012)

- One of the most important operating parameters is the organic loading rate (OLR)
- ✓ Changes in OLR influence:
 - 1. Metabolic paths.
 - 2. Population dynamics.
- ✓ Because the process changes over time it is important to:

Evaluate the effect of OLR on the process. Implement a real-time optimization strategy.

✓ To design and implement a real-time optimization strategy for computing the optimal feed flow which maximize and stabilize the hydrogen production

Materials and Methods

Step 1: Study effect of OLR over the productivity.

Function Productivity vs. OLR

Shen et al., 2009 ♦ Sreethawong et al., 2010 ▲ Hafez et al., 2010 ●

Step 2: Implementation of the optimization strategy.

- ✓ The real-time optimization strategy involves the continuous evaluation of the H₂ productivity to calculate the optimal feed flow.
- Optimal solution subject to a HRT working range (4 -12 h) and a corrected productivity standard deviation of 1%.
- ✓ For that the objective function is updated considering the last experimental data.

- ➤CSTR Applikon 1.25L (0.9L useful).
- ≻37 °C.
- ≻TRH from 6 and 24 h
- ➤Implementation software: Matlab.
- ≻ pH 5.5.
- ➢ Glucose (5, 10,15 y 20 g/L) + mineral salts
- Inoculum (sludge pretreated at 100 °C for 24h).

Experimental implementation

Experimental implementation

Analysis	Methodology
Liquid phase	
Glucose	Dubois
Volatile fatty acids and alcohols	Gas chromatography
COD	Hach
Biomass (VSS)	Gravimetry
Gas phase	

Composition of biogas

Biogas flow (H₂)

GC TCD and H₂ sensor Water displacement and flowmeter online

Results

• Effluent

— Feed concentration

Biogas composition (H₂,CO₂,CH₄)

Construction of the Productivity vs. OLR function Optimization

By-products

Volumetric productivity of H₂

Volumetric productivity vs. OLR

Solution algorithm

Real-time optimization

Conclusions

Conclusions

- ✓ A simple real-time optimization strategy was implemented to maximize the H₂ volumetric productivity by computing the optimal feed flow.
- ✓ Maximum H₂ volumetric productivity was increased by 25% and stability was substantially improved.
- ✓ H₂ productivity was increased during the operation around the optimal OLR (120 g[COD]I⁻¹d⁻¹) because the process was carried out mainly by active biomass producing H₂.

Acknowledgments

- ✓ Instituto de Ingeniería UNAM and Asociación
 Interamericana de Ingeniería Sanitaria y Ambiental (AIDIS).
- ✓ Working group at LIPATA UNAM.

gbuitronm@ii.unam.mx

