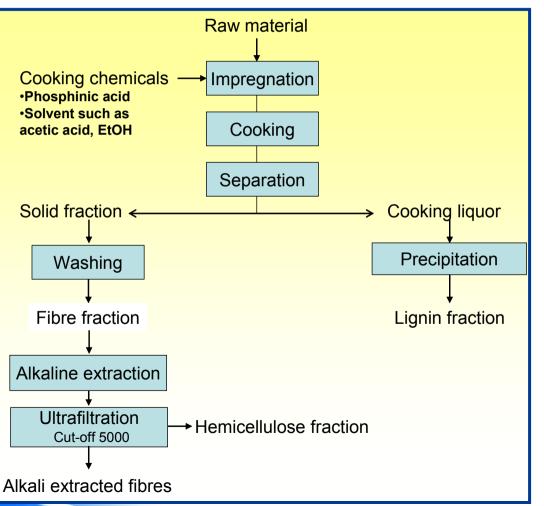
VTT Technical Research Centre of Finland Organosolv cooking as a facile fractionation method for annual plants


2nd Latin American CongressBiorefineriesMaterials and EnergyMay 4-6th, 2009, Concepcion, C.

resenter: Hannu Mikkonen enior Research Scientist (Chem.) TT

Introduction of novel organosolv LGF-Process

Fractionation of Biomass

Figure 1. Schematic presentatio LGF pulping and subsequent fractionation processes

Fractionating reed canary grass by organsolv cooking

 Table 1. Acetic acid/ H₃PO₂ cooking of reed canary grass

ACETIC ACID COOKING 26% moisture content of cooking liquor (CLQ)						
Sample	t °C	Time (h)	CLQ used	Fiber yield %	Hydrolysis-%	
RA-1	105	4	twice	57.4	59.3	
RA-2	105	8	once	54	47.8	
RA-3	105	13	once	51.0	47.4	
Sample	Post treatment of fiber with 1 M NaOH					
RA-1 Fiber	80	4		38	100	

Symbols CLQ = Cooking liquor, RA = Acetic acid cooking

- It is possible to use the same cooking liquor more than once (improved solid/liquid ratio)
- Complete hydrolysis of fiber is achievable when cooking is combined with alkaline extraction of fib

Fractionating reed canary grass by organsolv cooking

Table 2. Ethanol/ H_3PO_2 cooking of reed canary grass (R)

ETHANOL COOKING, 20% moisture content of cooking liquor (CLQ)					
Sample	t °C	Time (h)	CLQ used	Fiber yield	
RE-4	79	30	twice	73.5	75.8
Sample	Post treatment of fiber with 1M NaOH				
RE-4 Fiber	80	4		57	100

Symbols: CLQ: Cooking liquor, RE = Ethanol cooking

Table 3. Yields of isolated lignin from different cooking processes

Sample	Cooking liquid	Lignin yield % (as isolated)
RA-1	Acetic acid	13.4
RA-2	Acetic acid	21.0
RA-3	Acetic acid	11.0
RE-4	Ethanol	7.0

Very mild reaction condition can be used for partial remoof lignin (i.e. boiling ethance

Enzymatic hydrolysis rate of LGF treated biomass Acetic acid cooking

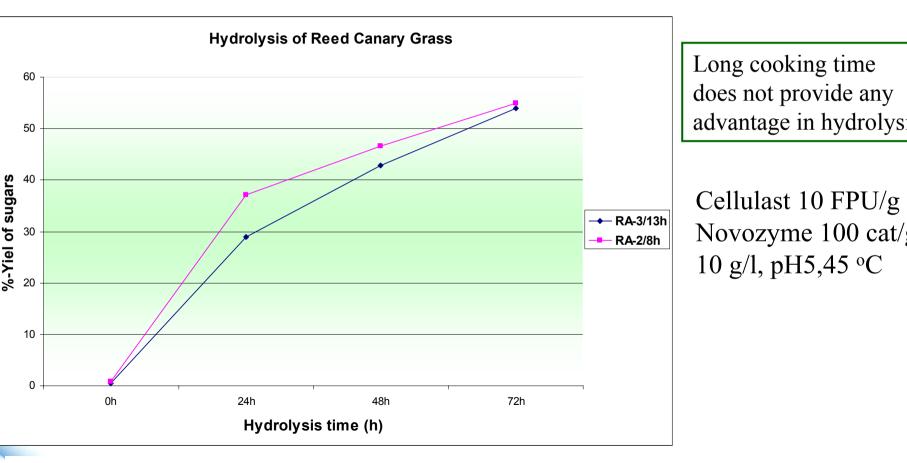
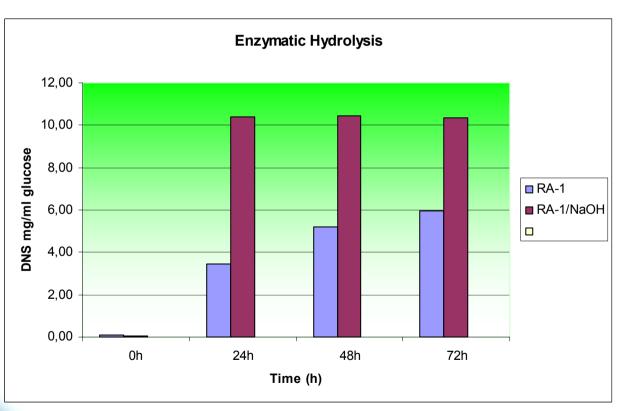
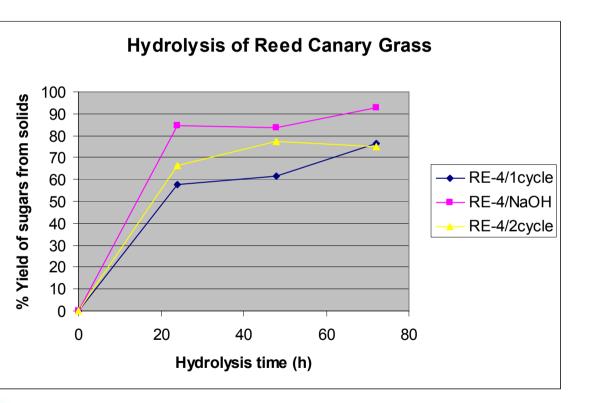



Figure 2. Effect of cooking time on hydrolysis rate

Enzymatic hydrolysis rate of LGF treated biomass Acetic acid cooking Fractionating


Complete hydrolysis of fiber i achieved in 24 h after fraction extraction with alkali

Probably alkali removes enzy inhibiting components from fi (e.g hemicellulose and/or resid lignin)

Figure 3 Promoting hydrolysis rate of LGF fiber by alkaline extraction

Enzymatic hydrolysis rate of LGF treated biomass Ethanol cooking Fractionating

Re-usage of cooking liquor Dos not have significant effect on hydrolysis result

Alkaline extraction increased significantly the hydrolysis rate

Figure 4. Results from ethanol LGF cooking. Recycling of cooking liquor and removal of enzyme inhibiting components.

Carbohydrate content of fiber (reed canary grass) and distribution of individual sugars

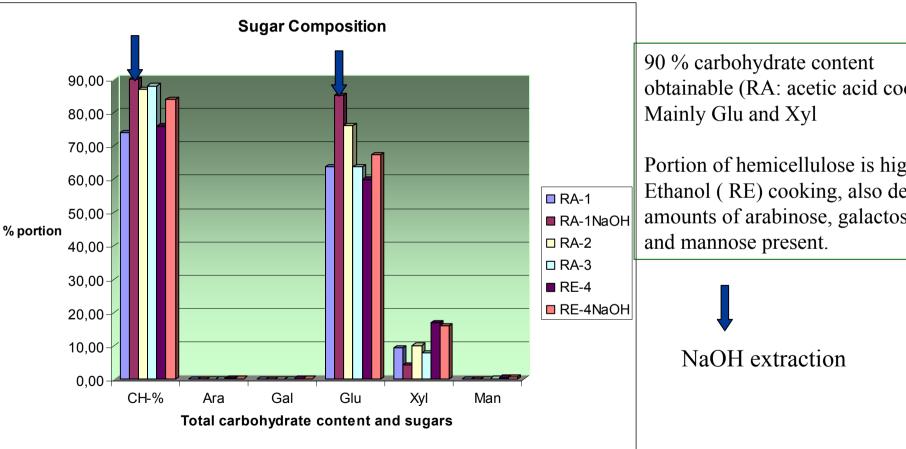


Figure 5. Results from carbohydrate analysis. CH = % amount of carbohydrates of solids. Distribution (%) of individual sugars in carbohydrate part

Characterization of reed canary grass lignin NMR and DSC Results

Table 4 Background phosphorus (origin from H_3PO_2)

Lignin	at 2 ppm mmol/g	at 10- 50 ppm mmol/g	Total P mmol/g
RA	0.006	0.56	0.57
RE	0.041	0.35	0.39

Table 5 Amount of OH group species (mmol/g) in reed canary grass dissolved lignin

Lignin	Aliphatic OH	Aromatic OH	S+C	G	Η	Carboxylic acid	Total OH
RE	3.3	1.8	0.4	0.8	0.6	0.3	5.4
RA	1.9	2.4	0.8	0.9	0.7	0.6	4.9

 Table 6. Thermoplasticity of lignin

Lignin	Glass transition / °C			
	1. cycle	2. cycle		
RE	65	61		
RA	104	102		
Protobind 1000,	107	105		
Reference				

S+C = syringyl +condensed phenolic units G = Guaiacyl unit

H = para-hydroxyphenyl phenolic unit

Conclusions

In addition to ethanol production, LGF-method is potential for fractionating lignocellulose materials to technically useful biopolymers in good overall yield.

Thank you for your attention

Hannu Mikkonen VTT Technical Research Centre of Finland www.vtt.fi hannu.mikkonen@vtt.fi

