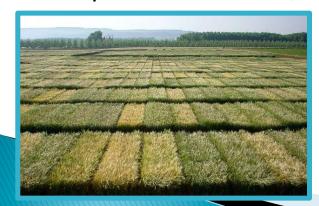


Detección de genes involucrados en la síntesis de ácidos grasos de la microalga *Botryococcus braunii*

Hernán Vera, Manuel Zapata A., David S. Holmes, Carlos Riquelme, Mariella Rivas A.

Introducción

Las microalgas son microorganismos fotosintéticos capaces de vivir en amplio rango de condiciones. Estas son de gran interés industrial por su elevada capacidad de síntesis de compuestos con potencial comercial, dentro de ellos se encuentra el Biodiesel.


Introducción

El potencial de las microalgas, como productoras de Biodiesel radica en :

Altos contenidos de compuestos lipídicos.

(40% – 75% de peso seco asociado a lípidos).

- Una elevada tasa de crecimiento (tasa de duplicación de 2-5 días)
- Espacio y tiempo de cultivo menor
- Cultivo independiente de zona geográfica y época estacional
- Sistema de cultivo adaptable a otra fuente de energía para disminuir el impacto ambiental (TERMOELECTRICA).

Introducción

	Productividad	Superficie equivalente			tryococcus br tryococcus br	
Materia prima	De Biodiesel (L/ha/año)	requerida (ha x 10°)	la superfici fértil requeri		(no necesariamente fértil) requerida	Chaetoceros gracili Characium polymor
Palma	5,950	3.972	16	6.14	-	Chlamydomonas ap
Jatropha	1,892	12.490	50).75	6.43	Chlorella emersonii
Colza	1,190	19.859	80	0.69	_	Chlorella minutissin
Girasol	952	24.823	10	0.9	-	Chlorella prototheco
Soya	446	52.986	21	15.3		Chlorella pyrenoido
Microalgas ^a	12,000	1.969	8	3.00	1.01	Chlorella sorokiana
Microalgas ^b	20,000	1.181	4	1.80	0.61	Chlorella sp. 1

^aRendimiento conservador de productividad de biodiesel microalgal acorde con Schenk et al.

⁶Productividad de biodiesel microalgal asequible a través de la tecnología actualmente disponible, acorde con Wijffels (2008).

nii var. B ^{2,5}	53	3.0 - 86.0	20.0 - 72.2
	-		39.3 - 40.0
Chaetoceros gracilis ²	46.0	Nannochloris sp. 1,8	20.0 - 47.8
Characium polymorphum ²	42.0	Nannochloropsis salina ⁶	40.8 - 72.2
Chlamydomonas applanata 2	32.8	Nannochloropsis sp. 1,9	28.7 - 68.0
Chlorella emersonii ^{9,10}	63.0	Naviculla pelliculosa ^{2,6}	22.0 - 44.8
Chlorella minutissima ^{9,10}	57.0	Neochloris oleoabundans ^{2,3}	18.9 - 88.8
Chlorella protothecoides 10	23.0	Nitzschia laevis 10	69.1
Chlorella pyrenoidosa ^{2,5}	14.4 - 35.8	Nitzschia pelea Kutz ^{2,8}	27.2 - 39.5
Chlorella sorokiana ^{9,10}	22.0	Nitzschia sp. 1,4	22.1 - 47.0
Chlorella sp. 1	28.0 - 32.0	Ochromonas danica ^{2,8}	39.0 - 71.0
Chlorella vulgaris 9	5.1 - 56.0	Oocystis polymorpha 2	34.7
Chlorococcum oleofaciens 2	44.3	Parietochloris incisa 10	62.0
Chlorosarcinopsis nagevensis 2	32.2	Ourococcus sp. 2,8	27.0 - 49.5
Chroomonas salina ⁶	44.0	Peridinum cinetum fa. Westi ²	36.0
Chrysochromulina kappa ^{2,5}	32.6	Phaeodactylum tricornutum 2	31.0
Chrysochromulina polylepsis ^{2,8}	47.6	Protosiphon botryoides 2,8	37.0
Cosmarium laeve ^{2,8}	15.0 - 33.0	Prymnesium parvm ^{2,8}	22.0 - 38.2
Crypthecodinium cohnii 1	20.0	Radiosphaera nagevensis ^{2,6}	43.0
Cyclotella cryptica 2	36.8	Scenedesmus dimorphus 2,0,9	6.0 - 40.0
Cyclotella sp. 2	54.0	Scenedesmus obliquus 9	11.0 - 55.0
Cylindrotheca sp. 1	16.0 - 37.0	Scotiella sp. 2,0	34.5 - 48.0
Dunaliella primolecta 1,2,8	23.0 - 53.8	Schizochytrium sp. 1	50.0 - 77.0
Dunaliella salina ^{2,4,6}	9.2 - 47.2	Skeletonema costatum 2	30.3
Euglena gracilis ²	55.0	Stichoccus bacillaris 2	38.9
Hantzchia sp. ²	61.0	Tetraselmis sueica 1	15.0 - 23.0

%Contenido lipídico

(g_{Lipidos}/g_{Peso-seco} x100)

Especie

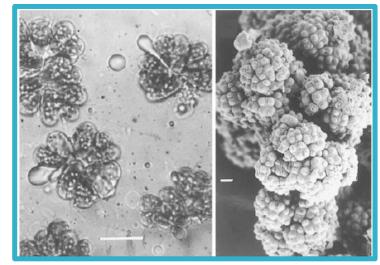
43.0 - 63.0

Especie

%Contenido lipídico

(g_{Lipidos}/g_{Peso-seco} x100)

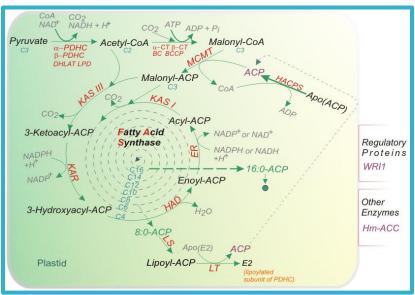
49.1

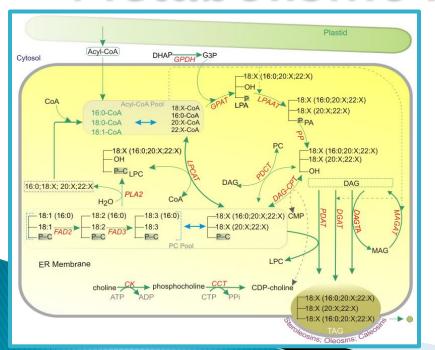

7.1 - 47.0

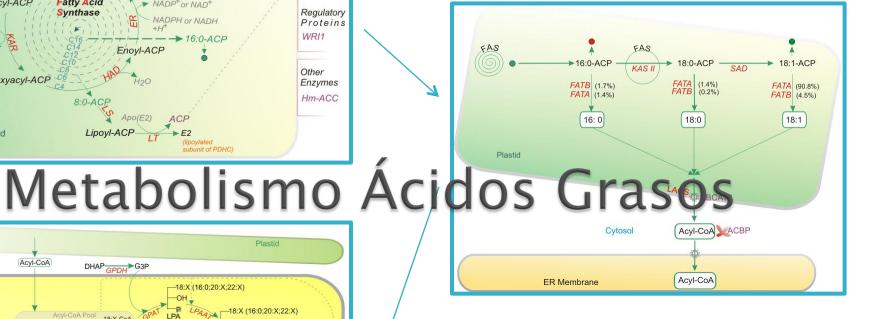
¹Chisti, 2007; ²Arredondo & Vázquez-Duhalt, 1991; ³Gatenby et al., 2003; ⁴Ben-Amotz et al., 1985; Metzger & Largeau, 2005; ⁶Sheehan et al., 1998; ⁷Vázquez-Duhalt & Greppin, 1987; ⁸Cohen, 1986; ⁹Gouveia & Oliveira, 2009; ¹⁰Li et al., 2008.

Botryococcus braunii

Es una Microalga colonial de agua dulce, con un alto contenido de lípidos en relación a su peso seco. Clasificada en 3 diferentes razas, según la composición química de sus lípidos (A-B-L).

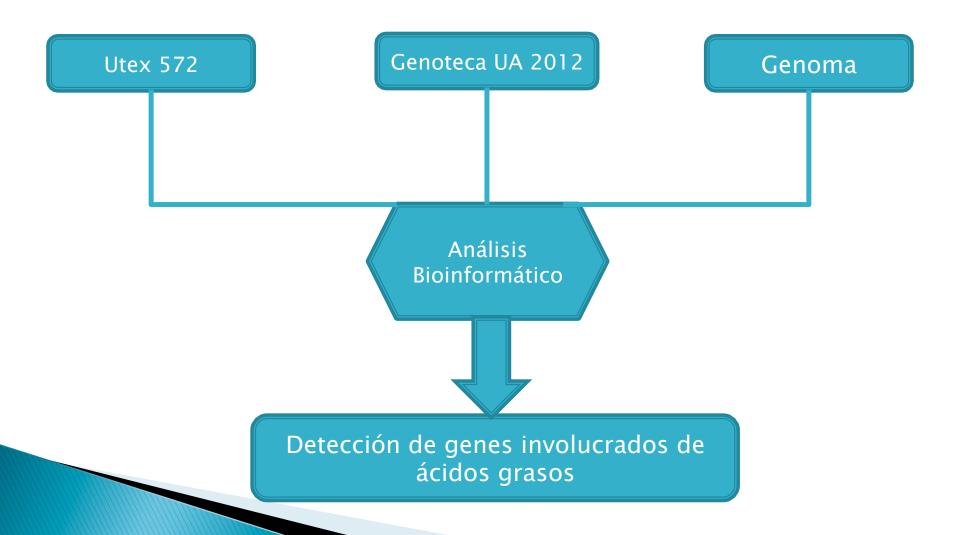

Utilizada también en la remediación de aguas residuales.




Botryococcus braunii

Cada raza tiene diferentes cualidades y cantidad de lípidos de interés.

Compound	Race A			Race B	Race L
	Bolivia (Overjuyo)	UK (Maddingley)	Morocco (Oukaimden)	Martinique (La Manzo)	Ivory Coast (Yamoussoukro)
Total lipids	62	63	43	53	35
Hydrocarbons	0.4	9	20	32	3
Ether lipids	35	5	n.d.	0.2	13
Epoxides	n. d	4	n.d.	1	0.6
Triacylglycerols	2	6	n.d.	n.d.	n.d.
Sterols	n. d	0.1	n.d.	0.2	0.2



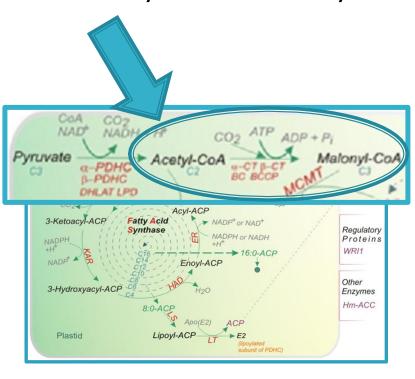
Fuente: The Arabidopsis Book. Autor: The American Society of Plant Biologists

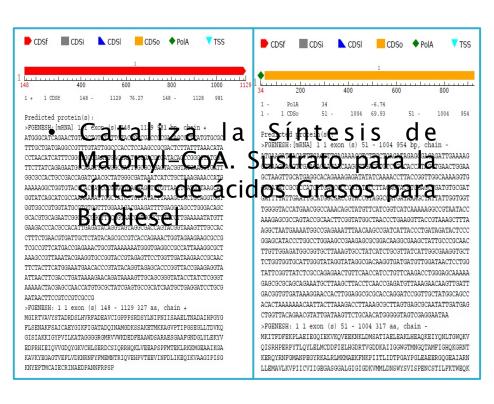
Objetivos

Predecir genes de las rutas metabólicas involucradas en la síntesis de ácidos grasos.

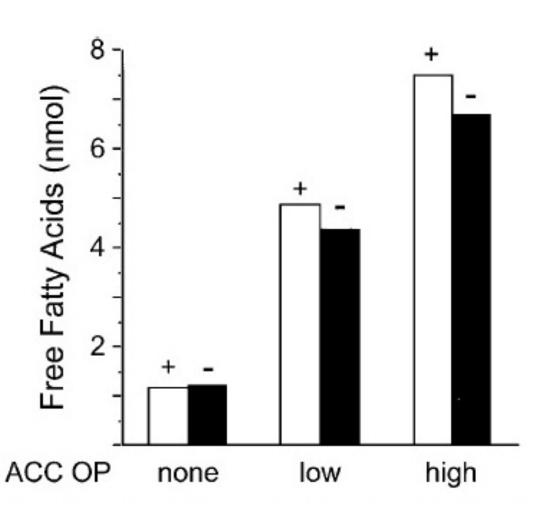
Metodologia

Resultados

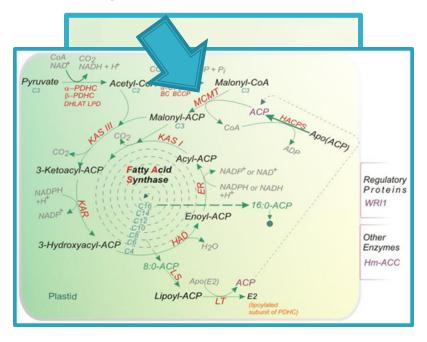

Biosíntesis de Ácidos grasos	E-Value	Identidad	Hit
3 oxoacyl [ACP] Synthase 1	3e-114	49%	Algoriphagus
3 oxoacyl [ACP] Synthase 2	1e-132	62%	Bacillus sub.
3 oxoacyl [ACP] Reductase	9e-69	51%	Bacillus sub.
3R hydroxymyristoyl [ACP] Dehydrase	1E-59	62%	Mucilaginibacter
Acetyl-CoA Carboxylase subunit alpha	9e-143	63%	Mucilaginibacter
Acetyl-CoA Carboxylase subunit biotin	8E-169	63%	Mucilaginibacter
Enoyl [ACP] Reductase	8E-35	34%	Mucilaginibacter
Malonyl -CoA acyl Transferase	2E-77	44%	Mucilaginibacter
Oleoyl [ACP] Thioesterase	2E-18	43%	Coccomyxa sub
Stearoyl Desaturase (ω-9)	5E-116	62%	Coccomyxa sub.
Metabolismo de Glicerolipidos	E-value	Identidad	Hit
Alpha Galactosidase	3e-77	41%	Medicago tru.
Glycerate Kinase	3e-21	54%	Chlorella var.
Diacylglycerol Acyltransferase	7e-73	63%	Coccomyxa sub.


Resultados

Síntesis de ácidos grasos insaturados	E-Value	Identidad	Hit
Fatty acids Desaturase (ω 3 – 6)	1e-47 , 1e-45	40% , 47%	Ricinus com
Long chain acyl-CoA Synthase	9e-40	68%	Coccomyxa
Trans-2-enoyl-CoA Reductase	4E-44	68%	Coccomyxa
3-hydroxy acyl-CoA Dehydratase	3E-63	62%	Coccomyxa

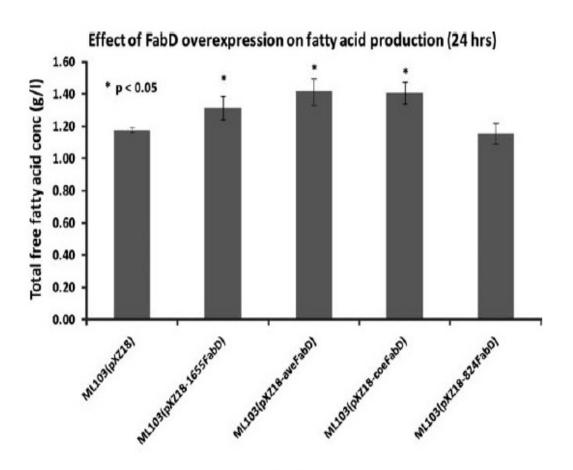

Elongación de Ácidos grasos	E-Value	Identidad	Hit
3-hidroxy acyl-CoA Dehydratase	3e-63	62%	Coccomyxa
3-ketoacyl-CoA Synthase	4e-40	73%	Coccomyxa
Beta-ketoacyl Reductase	5e-67	52%	Pinus tae.
Elongation of very long (ELOVL)	1e-35	68%	Coccomyxa
Enoyl-CoA Reductase	4e-44	68%	Coccomyxa
Palmitoyl Thioesterase	1e-22	46%	Coccomyxa

Acetyl-CoA Carboxylasa:

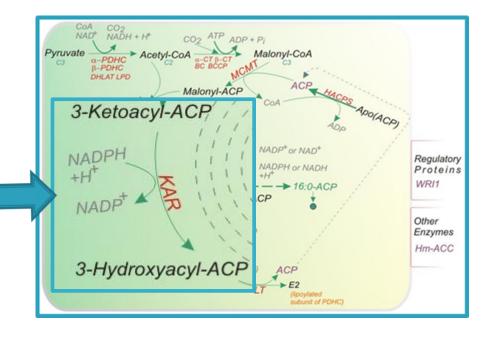


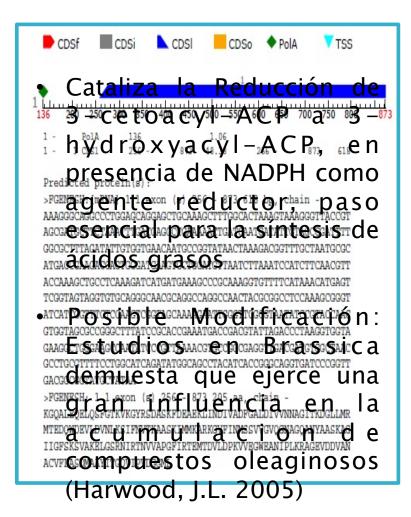


Posible Modificación Estudios en E.coli demuestran que la sobreexpresion de esta enzima puede lograr un aumento de 6 veces en la concentracion de acidos grasos. (Mark S. Davis et al. 2000)

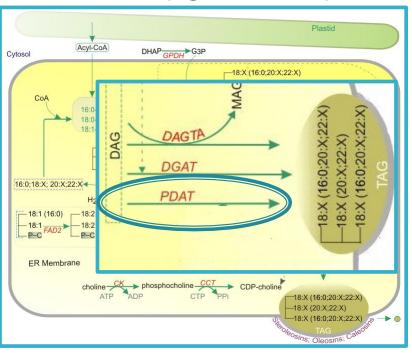


Malonyl-ACP Transferasa:





Posible Modificación: La sobrexpresión en E.coli de esta enzima de 3 diferentes bacterias, realzó la produccion de Acidos grasos en un 11%. (Xiujun Zhang, 2011)



B-Ketoacyl-ACP reductasa:

P-Diacylglicerol Acyltransferasa:


```
FGENESH 2.6 Prediction of potential genes in Dicot arab genomic DNA
Seq name: scaffold-20676
Length of sequer Country Eion: Transferencia
Number of predicted genes 1: in +chain 0, in -chain 1.

Number of predicted genes 1: in +chain 0, in -chain 1.

Number of predicted genes 1: in +chain 0, in -chain 1.

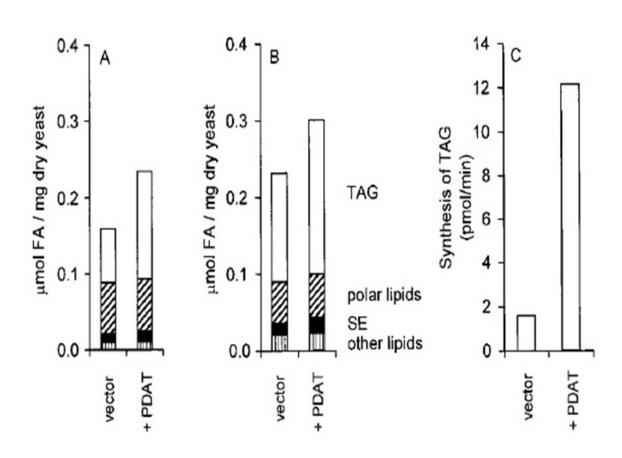
Number of predicted genes 1: in +chain 0, in -chain 1.

Number of predicted genes 1: in +chain 0, in -chain 1.

Number of predicted genes 1: in +chain 0, in -chain 1.

Number of predicted genes 1: in +chain 0, in -chain 1.

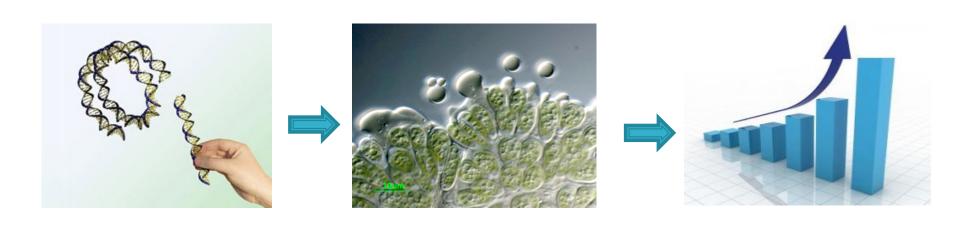
Number of predicted genes 1: in +chain 0, in -chain 1.


Number of predicted genes 1: in +chain 0, in -chain 1.

Number of predicted genes 1: in +chain 0, in -chain 1.

Number of predicted genes 2: in +chain 0, in -chain 1.

Number of predicted genes and exons: Variant 1 from 1, Score:19.734465
                    Diacilglicerol, para la sintesis de trigliceridos.
  CDSf
               400
                                                                       1000
                                                                                          1200
                                                                                                             1400
                         Modificación:
                         Sobrexpresión en 1061 1151 1254 125.22 1404 1 1553 1254 12554 1404 1 1553 1255
>FGENESH: [mRNAu n4 2.0 (a 457%55e 191 bp, chain -
CCAAATGCACCAAAATTGCACTTTTTTTTTTTTTTTTCGCTGTTLGCAAGCCTGGCTACGAGTACCTCOHIENIICOGTLOIGICOGGAA
                         aaccagacgtgcactggaagataaattactggggccacag
tAnderScDaniqvistçace
GTTTCGAATATCACTGAGATTGCTTCACGGGTGTCGTCAGATGCTGAATAG
>FGENESH: 1 4 exon (s) 425 - 1554 196 aa, chain -
CNKGPKDAQRFAFSPMLCPLPNAPKLQMFCLYGVGKPAERGYEYLNLSSKALHKVEEHMQ
HAETEPDVHWKINTGATDPDVDGGLVNGVRLSDGDGTVMLSPPPGSKDSRKPMYEIVAYO
LSAISFVCISGGHGGHDHGKPHVMGGPLSSDHVDILSNVEVLADVLRIAAGAGHELEDKI
VSNITEIASRVSSDAE
```


Posible modificación: Sobrexpresión en levadura aumenta entre un 29 a 47% el contenido lipidico. (Anders Dahlqvist, et al. 2000)

Conclusión y Proyecciones

La Predicción de genes, nos permite dar el primer paso para la modificación genética de esta microalga.

Esto puede significar un gran avance en la producción de Biodiesel a través de microalgas en el norte de Chile.

Gracias