Furans as offspring for broad applications in chemical and polymer industry

Jochen Forstner¹, Klemens Flick², Kristian Kowollik¹, Rainer Schweppe¹ ¹ Fraunhofer Institute for Chemical Technology ICT, Pfinztal, Germany ² Heilbronn University, Heilbronn, Germany

Outline

- Feedstock situation
- Applicability and derivatives
- Synthesis of furan compounds
- Results of functionalisation experiments
- Summary

Feedstock situation

- Finiteness of fossil resources for fuels, plastics, chemicals and solvents
- Alternative: lignocellulosic biorefinery concept lignin → aromatics; cellulose → glucose; hemicellulose → xylose
- Utilisation of residues from agriculture, forestry and food production with higher added value
 - Production of furan derivatives for solvents, polymers, chemicals, resins, fuels, fuel additives, pharmaceuticals, herbicides and fertilzer as alternatives to products based on fossil oil

Other plant

materials 4 % Animal origin

1 %

Composition of wood and wood related substances

	Content	Structure	Function
Cellulose	40-55% (wood) 30-40% (straw)	Long-chain macromolecule with 1.000 – 10.000 glucose units	Frame substance of the cell wall, absorption of drag force
Hemicellulose	20-35% (wood) ~ 35% (straw)	Short-chain, branched macromolecule of e.g. pentoses	Cement substance and flexibiliser
Lignin	28-41% (softwood) 18-25% (hardwood) 12-20% (straw)	Threedimensional macromolecule of phenylpropane units	Binding agent, regulates water permeation, protection from microbiological attacks

Composition of wood and wood related substances

	Fossil oil	Oils, fats	Lignocellulose
Carbon	85-90 %	76 %	50 %
Hydrogen	10-14 %	13 %	6 %
Oxygen	0-1 %	11 %	43 %

- Fossil compounds do not include oxygen, renewables do
- Different carbon / hydrogen / oxygen distribution requires new synthesis strategies for products
- \rightarrow Use of functionality (e.g. sugar alcohols)
- → Reduction of photosynthetic OH-overfunctionalisation
- Refunctionalisation

Production of furfural and 5-hydroxymethylfurfural

Acid catalysed threefold dehydration of xylose (techn.: inorg. acids) and fructose

State of the art: homogeneous catalysis, supercritical water, ionic liquids, organic solvents, ion exchange resins

→ Often contamination of targeted product

Exemplary for xylose dehydration to furfural

Production of furfural and 5-hydroxymethylfurfural

- Now: Heterogeneous catalysis
- Activation with highly charged electrical field of metal ions / salts

Applications and market for furfural

Annual production: min. 400 000 t (2010)

- Main producer: China Over 300 facilities, increasing own consumption
- 60-70% for furfuryl alcohol, resins

Rest for

- extractants for aromatics
- cleaning agents for C_4 and C_5 hydrocarbons
- reactive solvent and surfactant
- basis for other furan derivatives

BioRez[™] Thermoset resin

Applications for 5-hydroxymethylfurfural

- Specialty chemicals, polymers, fuel additives
- Compound thermally not very stable \rightarrow soon conversion to the dicarboxylic acid

5-hydroxymethylfurfural

furan-2,5-dicarboxylic acid

Derivatisation of the acid, then polymerisation

Poly(trimethylene-2,5-furanoate) PTF

2,5-furandicarboxylic acid FDCA

Heteroaromatic building block, synthesis biobased

Big physical and chemical similarity to fossil based terephtalic acid

нооссоон	ноос

Melting point	subl. ≈ 300 °C	320 °C	
Boiling point	392,4 °C	419,2 °C	
Flash point	205,3 °C	207,3 °C	
рК _А	3,49	2,28	
Vapor pressure (25 °C)	73,5 *10 ⁻⁸ Torr	8,9 *10 ⁻⁸ Torr	
Solubility	DMF, DMSO, Acetic acid		
	chemically stable, non-toxic		

COOH

2,5-furandicarboxylic acid FDCA

Polyamide Synthesis:

 $R = -CH_3 - H \text{ or } -CI \quad x = 2, 6, 8, 10, 12$

Polyester Synthesis:

$$R_{-0} \xrightarrow{O}_{O^{-}R} + HO + CH_{2} \xrightarrow{I_{x}} OH \xrightarrow{O}_{*} \xrightarrow{O}_{O^{-}} \xrightarrow{O}_{O^{+}} \xrightarrow{O^{+}} \xrightarrow{O}_{O^{+}} \xrightarrow{O}_{O^{+}} \xrightarrow{O$$

 $R = -CH_3 - H \text{ or } -CI \quad x = 2, 3, 4, 6, 10, 12, 18$

Applicability and derivatives of furan compounds

C₆ derived

 C_5 derived

Experimental setup

- 100 mL batch autoclave, stirred
- 50 mL educt solution with 5 % xylose or fructose 0,5 g catalyst
 - \rightarrow liquor ratio 1:5
- Dwell time 10 240 min
- Temperature 140 200 °C
- Analysis: quant. HPLC

Experimental setup Continuous operation

- 100 mL CSTR
- 1 g of catalyst, dispersed
- 50 bar pressure
- Dwell time 5 30 min
- Temperature 180 200 °C
- Analysis: quant. HPLC

Results Furfural synthesis (extract)

Catalyst	Conditions T [°C] / t [min]	Conversion Xylose [%]	Selectivity Furfural [%]	Yield Furfural [%]
no catalyst	160 / 60	7,91	78,89	6,24
H ₂ SO ₄	160 / 60	70,52	48,98	34,54
AI_2O_3	160 / 60	83,99	21,77	18,28
TiO ₂	160 / 60	79,94	40,74	32,57
AIP- complex	160 / 60	17,50	59,89	10,48
AIP- complex	180 / 30	27,13	66,66	18,08
AIP- complex	200 / 30	89,02	52,17	46,44

Results Furfural with commercial TiO₂ - catalyst

Results 5-hydroxymethylfurfural synthesis (extract)

Catalyst	Conditions T [°C] / t [min]	Conversion Fructose[%]	Selectivity 5-HMF [%]	Yield 5-HMF [%]
H ₂ SO ₄	160 / 60	99,49	5,71	5,69
ZrO ₂	180 / 30	74,48	61,04	45,46
TiO ₂	180 / 30	79,23	58,52	46,36
FeP-complex	180 / 30	94,00	44,27	41,61
ZrP- complex	180 / 30	86,81	46,53	40,40
AIP- complex	160 / 60	47,15	63,79	30,07
AIP- complex	180 / 30	81,63	56,73	46,31
AIP- complex	200 / 30	99,15	33,83	33,55

Results 5-hydroxymethylfurfural with AIP - catalyst

Results 5-hydroxymethylfurfural with ZrO₂ – continuous mode

Results 5-hydroxymethylfurfural with TiO₂ – continuous mode

Results **Product coloration**

High temperature and dwell time lead to degradation to e.g. levulinic acid, formic acid and humins that are increasingly responsible for coloration

Results 2,5-furandicarboxylic acid FDCA synthesis

- Oxidation of 5-hydroxymethylfurfural with noble metal catalysts in aequous solution
- Best performance showed Pt, Au \rightarrow Yield > 99 %

Summary

- Synthesis routes for products as alternative to fossil products
- Large feedstock amounts available and renewable
- Yields of 46 % for furfural as well as 5-hydroxymethylfurfural possible
- Reduction of dwell time from hours to minutes in comparison to references (e.g. 6 h in water-toluene)
- Mild reaction conditions without corrosive acids possible

Summary

- Simple separation of the heterogeneous catalyst with filtration and reuse of the catalyst
- 2,5-furandicarboxylic acid FDCA can be synthesised with 99 % yield
- Wide product range, secondary products and big family tree is representable
- Established products could be substituted, new compounds with new properties can be created

Thank you for your kind attention

Contact:

Jochen Forstner Fraunhofer Institute for Chemical Technology ICT

E-mail: jochen.forstner@ict.fraunhofer.de http://www.ict.fraunhofer.de

