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Table 3
Different culture methods for various microalgae strains.

Introduction

Culture medium

Airlift system

Strain Nutrients Culture condition Specific growth  Biomass Biomass Lipid Total lipid extiycted Comment Reference
rate (day~') productivity  yield (g/L) productifity  (wt of bios
(g/L/day) (g/1/day)
Botryococcus Secondary treated Air flowrate of 05 013 0.288 - - 1785 High potential of using secondary Orpezeet al, 2009
braunii sewage Air flowrate of 1 v/ 0.14 0.346 - - 1785 treated sewage from domestic
wastewater to grow microalgae
Botryococcus Secondary domestic 100% of wastewater medium o 0.034 048 - 36.14 Microalgae biodiesel production Sydney et al., 2011
braunii wastewater was used without dilution coupled with waste water treatment
appears as a good opportunity to Sol
commercialize the process o
Botryococcus Modified Chu 13 With supplement of 2% - 0.043 09 - 22 The organism exhibited wide Dayananda et al., TRCEIVer
braunii (v/v) CO; range of pH adaptability 2007
Chlamydomonas Wastewater Microalgae was cultured 0564 2 - 0505 2525 High lipid content and biomass Kong etal, 2010
reinhardtii in biocoil productivity can be attained through
biocoil due to greater light exposure
and intensity inside the polyvinyl tubing.
Chlorella Inorganic basal Heterotrophic culture with - 202 155 - 552 Higher lipid content was observed Xuet al., 2006 Fig. 2. Basic design of a horizontal wbular photobioreactor (adapted from Becker
protothecoides medium corn powder hydrolysate as if microalgae cultured in heterotrophic
carbon source condition
Chlorella Basal Medium Heterotrophic growth with - 7.3 512 - 503 High lipid was obtained through Xiong et al., 2008
protothecoides glucose (24 g/L) as carbon heterotrophic growth
source and yeast (4 gll) as
oty mean Brennan and Owende, 2010
Chlorella Basal medium Heterotrophic culture with - 41 17 17 43 Jerusalem artichoke appears as a low Cheng et al., 2009
protothecoides Jerusalem artichoke (30 g/L) cost carbon source for heterotrophic
as carbon source microalgae culture
Chlorella sp. Anaerobic digested 25 x diluted digested dairy 0409 - - - 137 Anaerobic digested manure served as Wang et al., 2010
dairy manure manure alow cost nutrients source to culture
microalgae while at the same time,
microalgae provide a valuable
solution to refractory dairy waste.
Chlorella sp. Walne medium with  Urea concentration of 0025 g/l 086 - 0464 0051 66.1 Urea is relatively low cost compare Hsieh and Wu,
urea as nitrogen and microalgae was cultured in to other inorganic nitrogen sources. 2009
source batch culture mode for 6 days
Urea concentration of 020 g/L 142 - 2027 oI 326 S | h[
and microalgae was cultured in unii .
batch culture mode for 6 days g Baffle Paddle thnents
Chlorella vulgaris Modified Fitzgerald Normal nutrients condition - 0.043 086 00128 295 COz wheel [nput
medium (20 days)
20 days of normal nutrients - - - - 44 l
condition followed by 17 days soaN Py
Lam and Lee, 2012 of nitrogen limited condition I_I(g:\;) L D)) — '
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Fig 2. Conceptual baflled system in raceway pond to culture microalgae.
Modified from Chisti (2007).
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Fig 3. Potential algal biomass conversion processes (adapted from Tsukahara and Sawayama [162]). Brennan and Owende, 2010 3
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PROTEIN EXTRACTION

f Chemical proteins solubilization & Enzymatic hydrolysis
Bioenergy

CHEMICAL PROTEIN Sequential optimization
SOLUBILIZATION

Variables
pH=9-10-11- 12-13
Temperature (°C)= 30-50-70
time (min)= 10- 20- 30
Stir (rpm)= 100- 200- 300
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Figure 2. % Protein solubility from microalgae
biomass to different reaction temperature
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ENZYMATIC HYDROLYSIS

1) Enzymatic hydrolysis of microalgae biomass through successive steps
addition of: Viscozyme, Alcalasa and Flavourzyme

2) Enzymatic hydrolysis of solubilized protein by chemical treatment by using
Alcalasa.

3) Enzymatic hydrolysis of solubilized protein by chemical treatment by using
Flavourzyme.

Raw material

1) Pretreated Microalgae
150g/L (similar to biomass post harvest)
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Figure 5. Hydrolysis degree after enzymatic hydrolysis of
microalgae biomass

Disadvantage
Carbohydrates loss
(65%)
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CARBOHYDRATES EXTRACTION TO BIOETHANOL PRODUCTION

Bioenergy

Carbohydrates to bioethanol production

Biomass to biodiesel production (high lipid content) 12



BIODIESEL PRODUCTION

Lipids extraction and transesterification
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Figure 8. Chromatogram fatty acid profile (a) "
microalgae 1 and (b) microalgae 2
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BIODIESEL PRODUCTION
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Figure 9. Biodiesel produced by direct transesterification
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BIOGAS PRODUCTION

Biochemical methane potential by using microalgae biomass
after lipids extraction

Figure 10. Biomass during microalgae biorefinery process (a)Protein extraction, (b) Drying,
(c) Dry biomass, (d) Biomass milled to the lipids extraction, (e) Biomass after lipids
extraction, (f) Biomass milled to biogas production
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BIOGAS PRODUCTION

Biochemical methane potential by using microalgae
biomass after transesterification reaction

Assays

117 serum bottles
50 mL reaction
Nutrients
Bicarbonate

35°C

Figure 10. Biomass after transesterification reaction
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BIOGAS PRODUCTION

Table 1. Microalgae characterization
Parametro Microalgae 1 | Spent microalgae 1 | Spent microalgae 2 | Spent microalgae 2
Humidity content [%] 79,58 7,66 3,99 3,13
Lipids [%]* 19,20 5,23 9,61 7,4
Protein [%]* 33,00 22,80 39,42 41
Fiber [%]* 3,33 7,94 4,34 3,54
Ash [%]* 31,00 40,13 10,34 13,75
Carbohidrates [%] 13,47 16,24 32,3 31,18
C/N [gC/gN] 5.85 6.97 - -

*dry basis
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Figure 12. BMP using spent microalgae after direct
transesterification 18



BIOGAS PRODUCTION
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Figure 13. Theoretical and real BMP usiing spent microalgae



NEW MICROALGAE BIORREFINERY CONCEPT

Microalgae

1.Harvest 2. Protein solubilization

s N
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Residual culture medium
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