Solid state fermentation of chemically untreated sugarcane bagasse for fungal production of single cell oil as biodiesel feedstock

Mahesh Khot ^{1,2}, Sanjay Govindwar², V. RaviKumar ³, B.D.Kulkarni ³, Ameeta RaviKumar¹

¹ Institute of Bioinformatics and Biotechnology (IBB), Savitribai Phule Pune University, Ganeshkhind, Pune-411007, India

² Department of Microbiology, Shivaji University, Kolhapur-416004, India

³ Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Pune 411 008, India

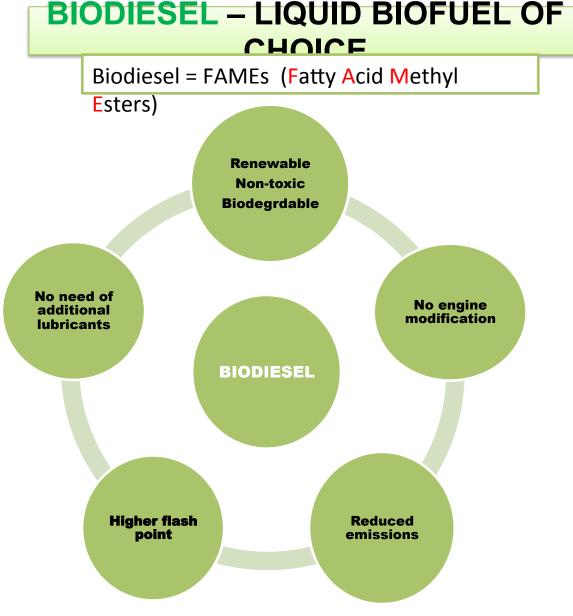
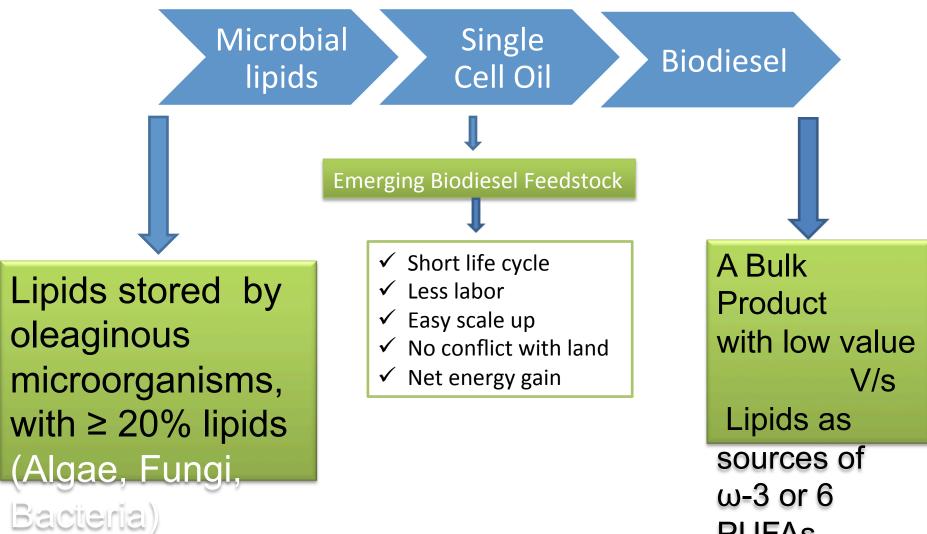
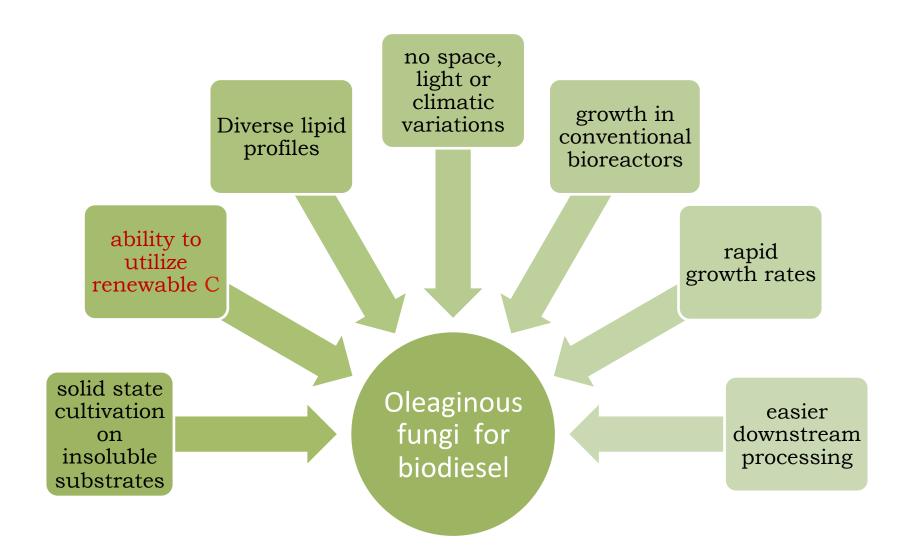



Figure 1 Advantages of biodiesel over petro- diesel



PUFAs

Solid State Fermentation (SSF)

- Bioprocess in absence or near absence of free water on insoluble solid matrix with moisture to suuport microbial growth
- ✓ the solid matrix is the source of C & nutrients,

Or

an inert growth support with impregnated nutrients

- ✓ the lower energy requirement and cultivation costs
- ✓ higher product yields,
- ✓ less wastewater generation,
- ✓ reduced transport costs,
- ✓ potential environmental benefits by utilizing solid agro-industrial wastes

Consolidated Bioprocessing

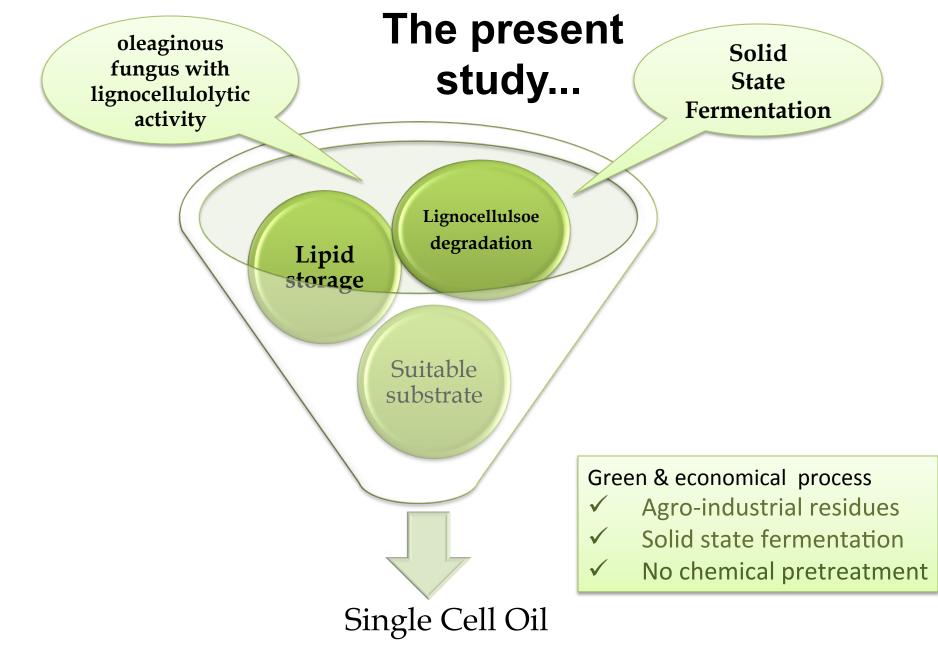
Consolidated Bioprocessing

 lignocellulose into desired biofuel in one step without added enzymes or chemicals

Advantages

- It reduces capital and processing costs by simplification of the process scheme and integration of as many unit operations as possible
- Use of a single microbial strain capable of both degrading insoluble components of lignocellulosic biomass and produce desired products at high yield and titer

Applications in biodiesel


 oleaginous fungi with their battery of lignocellulolytic enzymes would be used for the direct conversion of an agro-residue without chemical treatment into SCO as biodiesel feedstock

Mangrove Oleaginous fungi

- contribute to the intense carbon processing of this ecosystem,
- are ideal candidates for direct conversion of untreated agro-residue into lipids

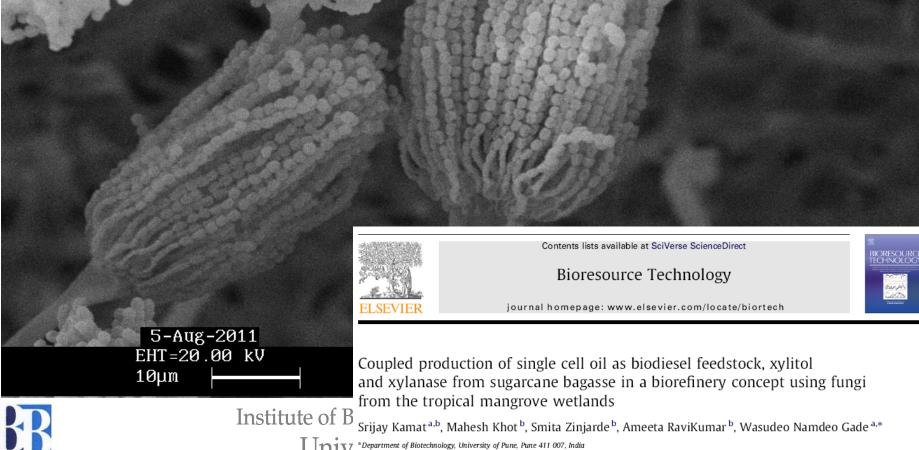
Objecti ve

Evaluation of consolidated bioprocessing for direct conversion of Sugarcane bagasse into single cell oil (SCO) as a biodiesel feedstock by a mangrove oleaginous fungal strain

Aspergillus terreus IBB M1

Why Aspergillus terreus IBB M1?

Khot et al. Microbial Cell Factories 2012, 11:71 http://www.microbialcellfactories.com/content/11/1/71



RESEARCH

Open Access

Single cell oil of oleaginous fungi from the tropical mangrove wetlands as a potential feedstock for biodiesel

Mahesh Khot¹, Srijay Kamat^{1,2}, Smita Zinjarde¹, Aditi Pant¹, Balu Chopade¹ and Ameeta RaviKumar^{1*}

^b Institute of Bioinformatics and Biotechnology, University of Pune, Pune 411 007, India

Experimental

Substrate

- ✓ bagasse procured as dried material from local sugar mill
- ✓ Water washes
- ✓ dried to constant weight
- ✓ milling to < 1mm</p>
- Used as substrate for SSF without any enzymatic/ chemical treatment

culture conditions

- ✓ Spore inoculum: A.terreus IBB M1 grown on Malt extract agar (7 days, 28°C)
- ✓ 250 mL wide mouth Erlenmeyer flasks each containing 5 g substrate and 20 mL of moistening agent composed of (in g/L)

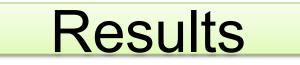
0.5 NH₄Cl, 1.5 yeast extract, 15 NaCl,

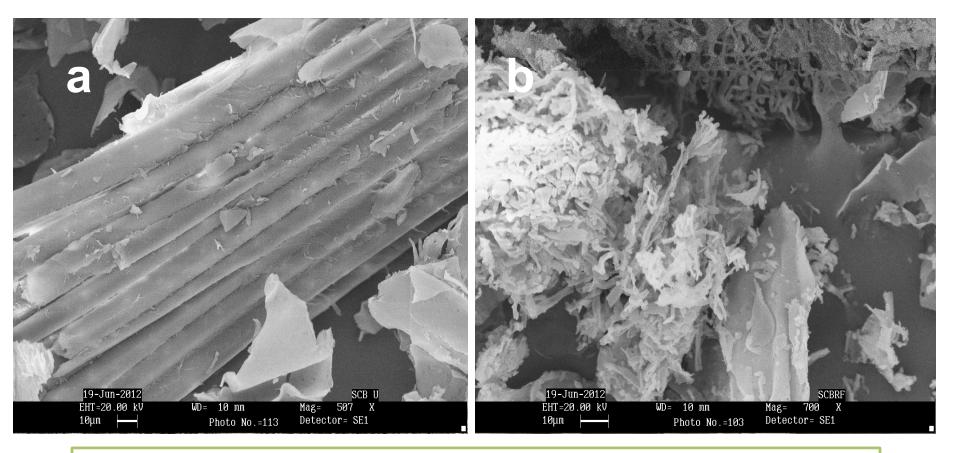
5 Na_2HPO_4 , 7 KH_2PO_4 , 1.5 $MgSO_4$.7 H_2O_4 , 0.1 $CaCl_2$.2 H_2O_4 , and trace metals

- ✓ steam sterilized, cooled and inoculated with 1mL of spore suspension per g of substrate.
- ✓ 30°C , 8 days, static

Methods

- ✓ Fermented Biomass heat dried to constant weight
- ✓ Scanning Electron Microscopy (SEM) analysis
- ✓ Total lipids extracted after cryopulverization of biomass, purified and determined gravimetrically as SCO
- ✓ FAME preparation by alkali catalyzed transesterification
- ✓ Fatty acid analysis by GC-FID
- ✓ Prediction of biodiesel fuel properties based on linear mixing rules and/or empirical, linear regression equations using FAME profile


Prediction of biodiesel fuel properties


Fuel property	Prediction model based on fatty acid profile
Density	
Kinematic viscosity	$\mathbf{v}_{\min} = \sum (\mathbf{A}_{c} \mathbf{v}_{c})$
Cetane number	

 c_i is the concentration (mass fraction) and q_i is the density of component individual FAME) present in FAMEs as detected by GC-FID.

 v_{mix} – the kinematic viscosity of sample, Ac – the relative amount (%/100) of individual FAME component; v_c – viscosity of individual FAME component obtained from the database.

CN_i represent reported CN of pure FAME available in database and W_i is the mass fraction of individual FAME component detected and quantified by GC-FID.

Fig.1 SEM analysis of substrate sugarcane bagasse in native state (a) and after fungal growth (b) university of Pune, INDIA

B

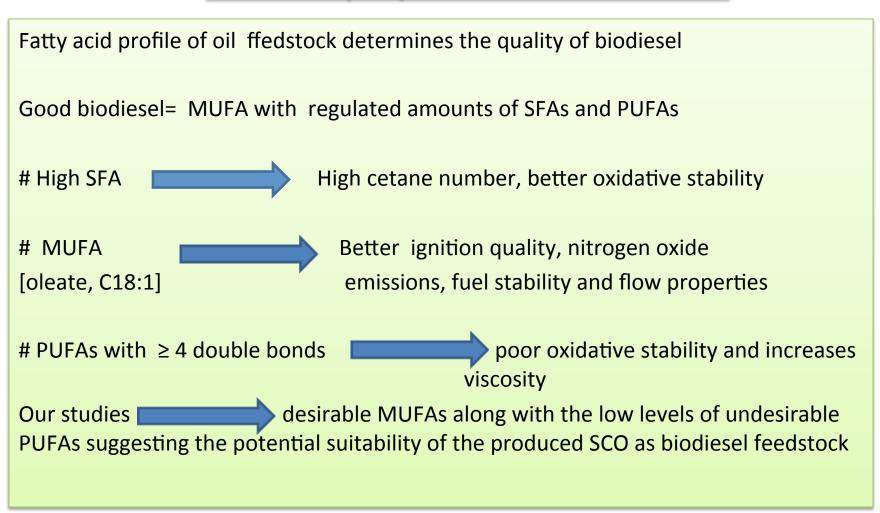
SCO Yield : 27.8 mg/g of substrate

A. terreus IBB M1 isolated from mangrove wetlands of the Indian west coast with 54% lipid content and suitable fatty acid profile

Given the mangrove habitat and extensive water washes of bagasse,

A. terreus IBB M1 has the capability to grow

on insoluble sugars present in bagasse


one-step Saccharification - oil accumulation

Consolidated bioprocessing

Fatty acid profile of SCO

Fatty acid methyl ester (FAME)	% wt		
Saturated (SFA)	Total SFA = 71.94		
Caprylic acid (C8: 0)	2.497		
Capric acid (C10: 0)	9.754		
Lauric acid (C12: 0)	15.967		
Myristic acid (C14: 0)	15.431		
Palmitic acid (C16: 0)	12.223		
Stearic acid (C18:0)	8.579		
Arachidic acid (C20:0)	5.668		
Monounsaturated (MUFA)	Total MUFA= 11.81		
Oleic acid (C18:1)	11.515		
Polyunsaturated (PUFA)	Total PUFA= 16.25		
Linoleic acid (C18:2)	8.809		
γ- Linolenic acid (C18:3)	7.45		

Fuel properties of FAMEs

Fuel properties of FAMEs

Fuel property/quality	Value	Biodiesel fuel standard specifications		
parameter		ASTM D6751	EN 14214	IS 15607
Density (15°C;g/cm ³)	0.86	ns	0.86 - 0.90	0.86 - 0.90
Kinematic viscosity (40°C; mm²/s)	3.2	1.9-6.0	3.5 - 5.0	3.5 - 5.0
Cetane number	53	47 min	51 min	51 min
Linolenic acid content (C18:3) (%)	7.45	ns	12 max	ns
FAMEs with ≥4 double bonds (%)	-	ns	1 max	ns

Conclusions

- Direct conversion of chemically untreated sugarcane bagasse into SCO was demonstrated via SSF using an oleaginous mangrove fungal strain *A. terreus* IBB M1
- ✓ SCO is suitable as biodiesel fuel feedstock based on fatty acid profile & fuel property analysis
- The solid state cultivation process is cost-effective and environmentfriendly
- ✓ It is being studied further by design of experiments methodology

Questions?

Institute of Bioinformatics and Biotechnology University of Pune, INDIA

t fiffifi

