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Bioethanol production:
2"d generation

The lignocellulose is composed of
carbohydrate polymers: cellulose,
hemicelluloses and pectin, and a
polyphenol polymer: lignin.

2) Hydrolysis

SSF

§- & 6-carbon sugars

1
3) Fermentation !

4) Distillation &

evaporation
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Polysaccharides presents in lignocellulose

#i Cellulose is the main component of the primary cell wall of plants. It is a polysaccharide consisting of a
linear chain of B-1,4-linked D-glucose units.
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bela-glucosdase cellobiohydrolase endoglucanase

exoglucanase
EC 3211 EC 3.2 181 EC3214

@ Hemicelluloses: Xylan, the major component of hemicelluloses, is composed of a linear chain of D-
xylopyranoses linked by 3(1—->4) and is substituted by several types of residues: methyl glucuronate, L-
arabinofuranose and acetate.
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beta-xylosidase
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xylanase
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Yang et al., 2009.
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#i Pectin is composed of two basic structures: a “smooth” region and a “hairy” region. The “smooth” region
(homogalacturonan) is a linear polymer of galacturonic acid residues. The “hairy” region is more complex,

containing xylogalacturonan and rhamnogalacturonans.

Rhamnogalacturonan Il Homogalacturonan Xylogalacturonan Rhamnogalacturonan |

O =D-Galacturonicacid © @ - -Arabinose @ -=D-Apiose é = O-Acetyl
O =L-Rhamnose O @ =L-Fucose ? = O-Methyl
@® -D-Glucuronic acid @ =L-Acericacid @ =D-Xylose = Borate
@® =Kdo @® =D-Dha O

Scheller et al., 2007
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Eucalyptus and Lenga residues in Chile
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“YEucalyptus is the second most abundant lignocellulosic material in Chile; equals to a 23 priateonste —10 &7”
% of the total forest plantations in this country. ﬁt
YLenga is a Chilean native tree that grows preferably in the extreme south of the i

country and represents 26.5% of native forests.

“The forest plantations are concentrated in certain regions of Chile:

%38.1% of them are located in the Maule Region and 62.8% (mainly native forest) in the
Los Lagos and Aysén (General Carlos Ibafiez del Campo) Regions.
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/ Pretreatment \

* Different pretreatment strategies have been developed throughout the years for
lignocelluloses, including physical, biological, chemical and physicochemical processes.

e Each of them is associated with some disadvantages:
* Physical treatments, such as steam explosion is energy-demanding.
* Biological processing methods, such as lignin degradation by fungi necessitate long

times to be effective.
wmical methods, such as dilute acid hydrolysis, produces toxic products. /
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lonic Liquids “Green Solvents”

& lonic liguids (ILs) are organic salts able to melt under 1002C.

& Excellent physical characteristics such as the ability to dissolve polar and non-polar organic and
inorganic materials, as well as polymers.

& The use of ILs for extraction of cellulose from wood avoids the use of toxic and hazardous chemicals,
and can be carried out under mild conditions.
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Saccharification and fermentation

After the pretreatment in the bioethanol production process, the saccharification and fermentation steps
can be carried out via different configurations:

a) Separate Hydrolysis and Fermentation (SHF), a process in which hydrolysis of polysaccharides and the
fermentation of monosaccharides is performed separately.

b) Simultaneous Saccharification and Fermentation (SSF), a process in which polysaccharides hydrolysis
and fermentation are carried out in one container.

c) Consolidated BioProcessing (CBP), a process in which the enzymes are produced by the fermenting
organismes.

d) Simultaneous Saccharification and Co-Fermentation of hexoses and pentoses (SSCF).

N _/
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/ Objective \

#.The aim of the present work is to study the effect of the use of
different process configurations for the saccharification and
fermentation steps (SSF and SHF).

N _/
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Nothofagus pumilio (LENGA)

% Residual Lenga (about 40-60 years of age) from a sawmill located in the Santa Alicia, Tierra del
Fuego (Xl region).

% Chip size: 1- 2 mm high, 1-3 mm wide and 5-7 mm long.

¥ Lenga was dried at 80° C overnight prior to pretreatments.

Hammermill




Composition of Nothofagus pumilio lignocellulose.

Table 1: Carbohydrate content (mg/g of dry mass) in Lenga.
Monosaccharides’ content analyzed by the acid methanolysis method.

=Iel?<?rlgctable substances : : dr mass
33% B cshes 6.58
| Fructose | 0.45

17%

9.37
Galacturonic acid 16.89
5% Glucuronic acid 3.64
| Mannose | 4.06
4.43
146.78
643.76
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Experimental Procedure

([EMIM?][CH]) &l celluclast; supplied
s \ ! - with B-glucosidase

o | . Nt # Saccharification
ﬁuer:/g/;c)) . ,\ Quantification of monosaccharides
P xN - and reducing sugar.
QQ

T: 150 °C

Reducing sugar quantitation by the dinitrosalicylic colorimetric method

OH OH . . . .
ooe o, oo w | This method involves the oxidation of the aldehyde
+  reducing sugar ——» functional group present; simultaneously DNS is reduced to
NO, NO, 3-amino,5-nitrosalicylic acid (Bailey et al., 1992).
3,5-dinitrosalicylic acid(DNS) 3-amino-5-nitro salicylic acidl

The monosaccharides profiles were determined by Gas Chromatography (GC)
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Table 2. Effect of temperature and time of pretreatment on the release of sugars
from Lenga after enzymatic hydrolysis, using a 1:20 biomass/IL ratio.
- _ _ Sugar yield
lonic Liquid Temperature [°C] Time [min]
[wt-%]
s

[EMIM*][CI] 150 60 36.5

[EMIM*][CI]
150 30 51.9
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Table 3. Influence of different biomass-IL ratios and pretreatment times on the release of sugars

L —,—, e

. . . Sugar
Biomass/IL ratio Time .
Sugar productivity
[wt:wt] [min]
[8/8 IL/h]

Glucose 0.393

15 Total reducing sugars 0.595

Glucose 0.198

1:3 30 Total reducing sugars 0.305
Glucose 0.259

1:5 15 Total reducing sugars 0.375
Glucose 0.065

1:10 30 Total reducing sugars 0.087

The best condition was pretreatments with [EMIM*][CI] at 150° C, a 1:3 biomass-IL loading ratio
and an exposure time of 15 min.
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Experimental strategy for Separate Hydrolysis and Fermentation (SHF).

([EMIM#][CI]) oy

i

» I » Fermentation (SHF) »[ ]

[ Centrifugation J [ Centrifugation J
[ 50°C for 72 h) @oSCfor 721 |

-  0O0O0O0on0non—n0>0>0 V4V
Experimental strategy for Simultaneous Saccharification and Fermentation (SSF).

([EMIM][CIT)
+ Yeast (red star)

:< : 4 ! P . N 7
( Saccharification

and Fermentation
(SSF)

[400(: for 72 h] Centrlfugatlon }

Glucose and ethanol were iuantified by HPLC | Aminex HPX-87H -OIOOS M HiSOi: 0|6 mL/min:45° Cl.
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Lenga —®— Without pretreatment/SHF —e— Pretreated with [EMIM+][CI-]/SHF
—4A— Without pretreatment/ SSF —w— Pretreated with [EMIM+][CI-[/SSF
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Figure 1. The effect of the different fermentation and saccharification processes (SHF and SSF) on ethanol production
from Lenga. Ethanol production in SHF from Lenga is shown in squares and pretreated Lenga is shown in circle; Ethanol
production in SSF from Lenga is shown in up triangles and pretreated Lenga is shown in down triangles.
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Table 4: The yield of ethanol production from Lenga for different fermentation and saccharification
processes (SHF and SSF).

Pretreatment Ethanol yield Percentage relative to theoretical
[g ethanol/g glucose] yield (wt-%)

Theoretical yield 0.510 100.0
Without pretreatment/SHF* 0.020 3.92
Pretreatment with [EMIM*][CI-]/ SHF* 0.134 26.3

Without pretreatment/SFF* 0.017 3.33
Pretreatment with [EMIM*][CI-]/ SSF** 0.173 33.9

(*) Fermentation for 4 hours; (**) fermentation for 24 hours.
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Eucalyptus globulus
¥ Residual Eucalyptus (15 years of age) from a sawmill located in the V Region.
% Chip size: 0.5-1 mm wide, 0.5-1 mm high and 10-20 mm long.

¥ Eucalyptus was dried at 65° C for 18 hours.

B
237

Hammermill
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Composition of Eucalyptus globulus lignocellulose.

Table 5: Carbohydrate content (mg/g of dry mass) in

Eucalyptus globulus. Monosaccharides’ content analyzed
by the acid methanolysis method.

Composition of Eucalyptus globulus I cellulose
I hemicellulose
[ lignin st .
I cxtractable substances . resh sample
36% [lashes Monosaccharide

[mg/g of fresh sample]

16% Arabinose 414

Fructose 0.80

Galactose 13.30

0.83%/%) Galacturonic acid 13.67

43% Glucuronic acid 2.54

4-0-Me-Glucuronic acid 1315

Mannose 7.29

Rhammnose 5.34

Xylose 146.56
Glucose 427 .55
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Figure 2. Effect of different lonic liquids on glucose liberation from Eucalyptus. A) Eucalyptus without pretreatment is
shown in squares; pretreated with [EMIM+][CI-] is shown in circles and pretreated with [EMIM+][Oac-] is shown in up
triangles. B) Percentage of glucose liberated from Eucalyptus.
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Saccharification
and Fermentation
(SSF)

{ Centrifugation ]

C for 72 h (250 rpm)_a
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5 _ SSF from Eucalyptus —®— without pretreatment
—o—[EMIM+][OAc-]/washing 2 times—&—[EMIM+][OAc-]/washing 6 times
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Figure 3. Effect of the Simultaneous Fermentation and Saccharification processes (SSF) for 3 days on ethanol production.

Eucalyptus residues without pretreatment is shown in squares. Eucalyptus pretreated with [EMIM+][OAc-]/ fibers washed 2
times is shown in circles, and Eucalyptus pretreated with [EMIM+][OAc-]/ fibers washed 6 times is shown in triangles.
Eucalyptus residues were pretreated with [EMIM+][OAc-] at 150°C, for 30 min, using a 1:3 ratio (wt RL/wt IL).
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Table 6: Effect of the number of washing cycles on the yield of ethanol production using Simultaneous
Saccharification and Fermentation (SSF) of Eucalyptus lignocellulose.

Pretreatment Ethanol yield Percentage relative to

[g ethanol/g glucose] theoretical yield (wt-%)

Pretreatment with [EMIM*][OACc]/ 0.083 16.5
fibers washed two times

Pretreatment with [EMIM*][OACc]/ 0.194 38.0

fibers washed six times
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Table 7. Composition of monosaccharides in fresh and processed Eucalyptus globulus samples after
fermentation.

Fresh sample Processed sample

Monosaccharide [mg/g of fresh [mg/g of processed
sample] sample] ()

Arabinose 4.14 4.55
4-0-Me-Glucuronic acid 13.15 12.15
Rhamnose 5.34 2.55
Xylose 146.56 107.24
427.55 183.89

&l Celluclast; endo and exo-B-
glucanase supplied with B-
glucosidase from Sigma.

&l Celluclast has residual xylanase
activity.

(*)

Calculated by gram of remaining mass after fermentation.
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Ethanol (g/L)

Fermentation with Saccharomyces cerevisiae (Ethanol Red start)
—=&— Fermentation of glucose
—&— Fermentation of xylose
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Figure 4: Fermentation of glucose and xylose with S. cerevisiae Ethanol Red®. Ethanol production from glucose is
shown in squares and xylose is shown in circles. Fermentation of 9 g/L of carbohydrate for 48 hours at 40°C.
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/ Conclusions and outlook \

% The use of [EMIM+][CI-] and [EMIM+][OAc-] as “structure-disruptive” solvents in the
pretreatment of Lenga and Eucalyptus residues was performed.

% The combination of pretreatment with ionic liquid and a SSF process has high potential
for bioethanol production from Lenga and Eucalyptus residues.

% Further improvements are still possible by optimization of some operational conditions
and the recycling of ILs.

% For saccharification, we will study the effect of the combination of cellulases with
xilanases under different incubation periods, temperatures, and pHs.

% For fermentation, we will search for microorganisms that are able to ferment glucose
and xylose.
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