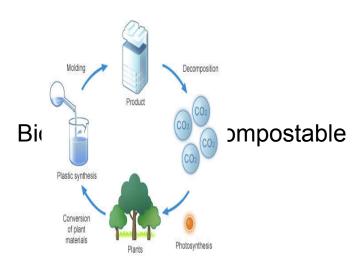




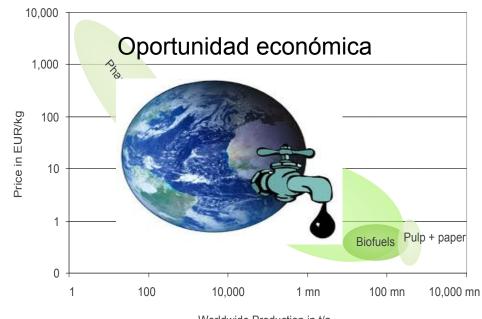


# Efecto del contenido de lignina sobre la acetilación de aserrín de madera de pino radiata

1\*Miguel Pereira, <sup>1</sup>Karol Peredo, <sup>1</sup>Jorge Reyes, <sup>1</sup>Gustavo Solís y <sup>2</sup>Alex Berg.

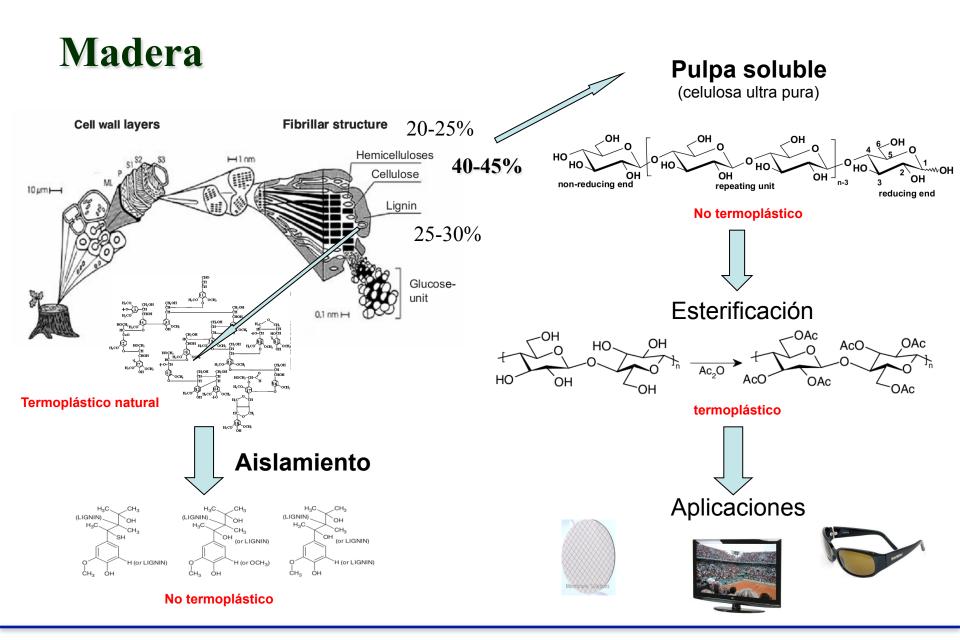

<sup>1</sup>Departamento de Ingeniería Química, <sup>2</sup>Unidad de Desarrollo Tecnológico, Universidad de Concepción.

### Contenido


| □Introducción.           |
|--------------------------|
| □Biopolímeros de madera. |
| □Metodología.            |
| □Resultados.             |
| □Conclusión.             |

### ¿Por que producir plásticos desde biomasa?

### Recursos renovable




Desarrollo sustentable



Worldwide Production in t/a
Source: DECHEMA Positionspapier weiße Biotechnology (2004)





### Composites de acetato de celulosa y lignina

### Lignin /lignina modificada



- Poliuretanos
- Polipropileno
- polietileno
- Acetato de celulosa

IOP PUBLISHING

Sci. Technol. Adv. Mater. 12 (2011) 045006 (16pp)

SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS doi:10.1088/1468-6996/12/4/045006

### Biopolymer-based nanocomposites: effect of lignin acetylation in cellulose triacetate films

Laura Alicia Manjarrez Nevárez<sup>1</sup>, Lourdes Ballinas Casarrubias<sup>2</sup>, Alain Celzard<sup>3</sup>, Vanessa Fierro<sup>3</sup>, Vinicio Torres Muñoz<sup>2</sup>, Alejandro Camacho Davila<sup>2</sup>, José Román Torres Lubian<sup>4</sup> and Guillermo González Sánchez<sup>1</sup>

### Acetatos de celulosa

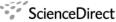


- •Fibras naturales: hemp, lana
- •Polvo de madera
- •Almidón

A New Approach for the Production of Cellulose Acetate: Acetylation of Mechanical Pulp with Subsequent Isolation of Cellulose Acetate by Differential Solubility

D. G. BARKALOW, \* R. M. ROWELL,† and R. A. YOUNG, University of Wisconsin, Department of Forestry, 1630 Linden Drive, Madison, Wisconsin 53706, and USDA Forest Products Laboratory, 1 Gifford Pinchot Drive, Madison, Wisconsin, 53705

### Producción de acetato de celulosa a partir de materias primas no convencionales


Composites: Part A 39 (2008) 1362-1369

Contents lists available Composites:

journal homepage: www.elsevie



Available online at www.sciencedirect.com



Carbohydrate Polymers 73 (2008) 74-82

Carbohydrate Polymers 83 (2011) 339-345

available at ScienceDirect

Carbohydrate drate Polymers Polymers

www.elsevier.com/locate/carbpol



Cellulose and cellulignin from sugarcane bas composites: Effect of acetylation on mechan

**Cellulose Triacetate Prepared froi Dissolving Pulp and Its Insoluble** 

### Synthesis and characterization of cellulose acetate produced from recycled newspaper

Guimes Rodrigues Filho a,\*, Douglas Santos Monteiro a, Carla da Silva Meireles a, Rosana Maria Nascimento de Assunção <sup>a</sup>, Daniel Alves Cerqueira <sup>a</sup>, Hernane Silva Barud <sup>b</sup>, Sidney J.L. Ribeiro <sup>b</sup>, Younes Messadeq <sup>b</sup>

Caixa Postal 593. CEP: 38400-902. Brazil b Instituto de Química da Universidade Estadual Paulista, Campus de Araraquara, SP, Brazil

Received 2 August 2007; received in revised form 4 September 2007; accepted 5 November 2007 Available online 13 November 2007

n of wood by reaction with vinyl acetate

Sèbe\*

Vood Modification 2005

cellulose acetate

w.elsevier.com/locate/carbpol

### **Mediums**

Department of Socio-Environmental Energy Science, Graduate School of Energy Science, Kyoto University, Kyoto 606-01, Japan

Received 20 February 1997; accepted 16 June 1997

SHIRO SAKA, KEIKO TAKANASHI

Carbohydrate Polymers

Contents lists available

Carbohydrate

\* Instituto de Química da Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Av. João Naves de Átila 2121,

### Javad Torkaman

y of Guilan, P.O. Box 1144, Somehsara, Rasht, Iran :orkaman@yahoo.com

site made from acetylated

New process for producing cellulose acetate from wood in concentrated acetic acid

Hironori Sato, Yasumitsu Uraki\*, Takao Kishimoto and Yoshihiro Sano

Laboratory of Wood Science, Graduate School of Agriculture, Hokkaido University, North-9, West-9 Kita-ku, Sapporo 060-8589, Japan; \*Author for correspondence (e-mail: uraki@for.agr.hokudai.ac.jp www.elsevier.com/locate/carbpo Phone: +81-11-706-2817; Fax: +81-11-716-0879)

ydrate Polymers 76 (2009) 23-29

lists available at ScienceDirect hydrate Polymers

Synthesis of cellulose acetate from cotton l

H.N. Cheng a,\*, Michael K. Dowd a, G.W. Selling b, Atanu

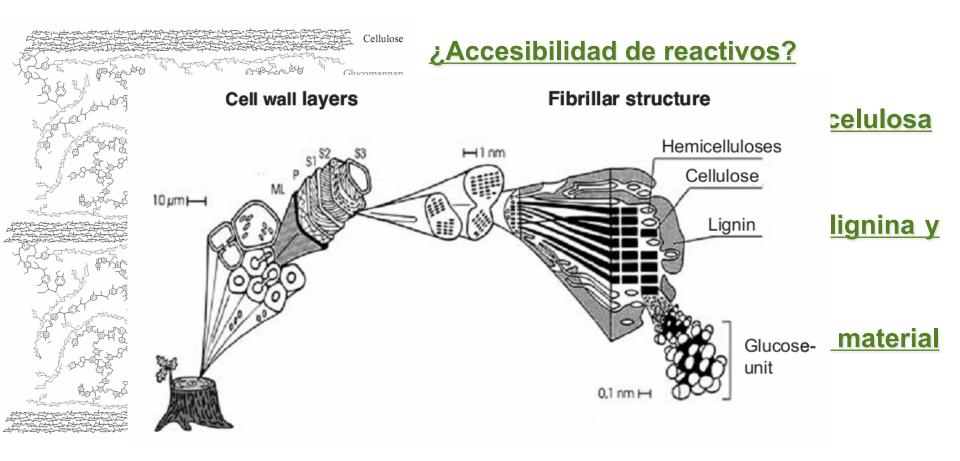
Received 4 June 2002; accepted in revised form 17 April 2003

© 2003 Kluwer Academic Publishers, Printed in the Netherlands,

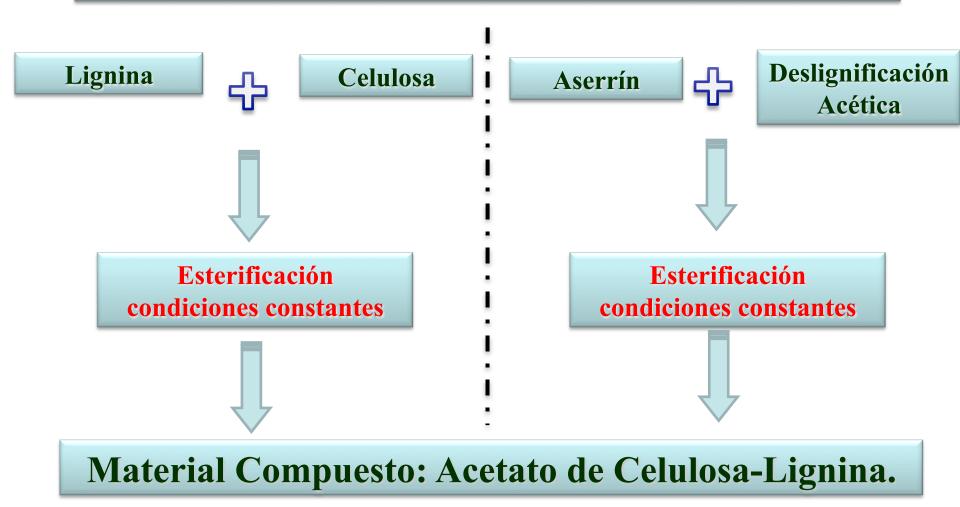
<sup>a</sup> Southern Regional Research Center, USDA/Agricultural Research Service, 1100 Robert E. Lee Blvd., New Orleans, LA 70124, USA

Cellulose 10: 397-404, 2003.

<sup>b</sup> Plant Polymer Research Unit, National Center for Agricultural Utilization Research, USDA/Agricultural Research Services, 1815 N. University Street, Peoria, IL 61604, USA

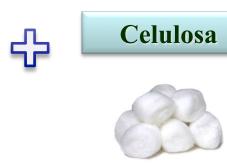

llulose for producing cellulose acetates:

Novel use of residual hemicellulose as plasticizer


Hamid M. Shaikh, Kiran V. Pandare, Greeshma Nair, Anjani J. Varma\*

Polymer Science and Engineering Division, National Chemical Laboratory, Pune 41 1008, India

### Composite Acetato de celulosa- Lignia




## Aproximación a la comprensión del proceso de acetilación de biomasa.



### **Experimental**

# Lignina 0 % 5 % 10 % 15 % 20% 25%

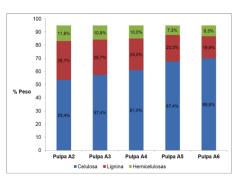
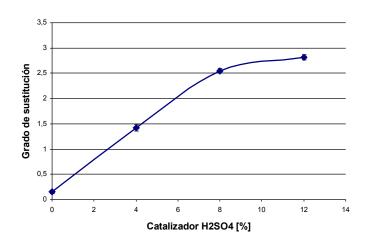






Deslignificación

Esterificación Condiciones constantes

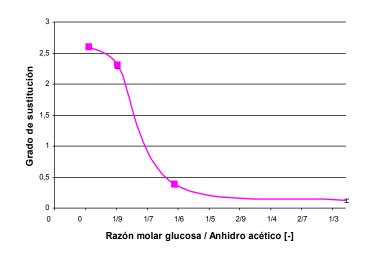
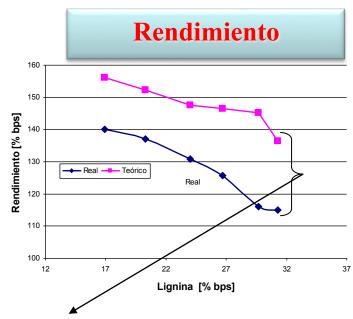




Figura 5.12: Composición Química de las pulpas A2, A3, A4, A5 y A6.

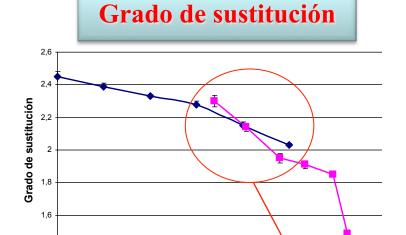
### Resultados

### Definición de condiciones acetilación









Razón Molar glucosa/Anhídrido acético : 1/9
Catalizador :10% bps
Temperatura : 40°C
Razón sólido/solvente :1/5 p/v
Tiempo de reacción : 1,5 Hr.

### Resultados



Material soluble o degradado durante la acetilación.

### Solubilidad



15

Lignina [% bps]

La distribución de la lignina en la pared celular parece no tener gran influencia para concentración < a 20%.

30

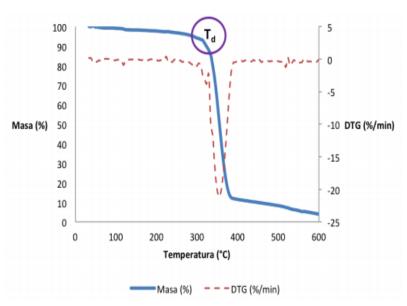
35

### Aserrín deslignificado

|   | Lignina [%] | D.S. | Solubilidda<br>en acetona | Solubilidad en cloroformo |
|---|-------------|------|---------------------------|---------------------------|
| / | 16,9        | 2,3  | 88,6                      | Insoluble                 |
| ( | 20,3        | 2,1  | 73,8                      | Insoluble                 |
| \ | 24,0        | 2,0  | 51,3                      | Insoluble                 |
|   | 26,7        | 1,9  | 40,2                      | Insoluble                 |
|   | 29,7        | 1,9  | Insoluble                 | Insoluble                 |
|   | 31,3        | 1,6  | Insoluble                 | Insoluble                 |

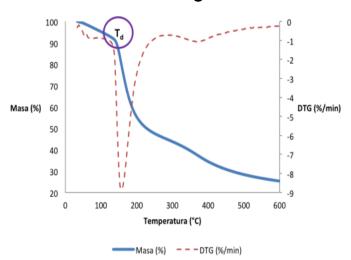
#### Celulosa más lignina

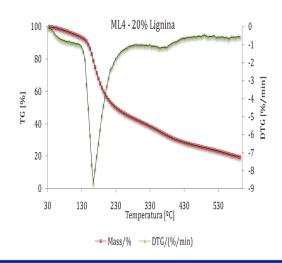
5


0

10

| Coluitou III III III III III III III III III I |      |                           |                              |  |  |  |
|------------------------------------------------|------|---------------------------|------------------------------|--|--|--|
| Lignina [%]                                    | D.S. | Solubilidda<br>en acetona | Solubilidad en<br>cloroformo |  |  |  |
| 0,0                                            | 2,45 | 100                       | Insoluble                    |  |  |  |
| 5,0                                            | 2,39 | 89                        | Insoluble                    |  |  |  |
| 10,0                                           | 2,33 | 74                        | Insoluble                    |  |  |  |
| 15,0                                           | 2,28 | 69                        | Insoluble                    |  |  |  |
| 20,0                                           | 2,15 | 30                        | Insoluble                    |  |  |  |
| 25,0                                           | 2,03 | Insoluble                 | Insoluble                    |  |  |  |

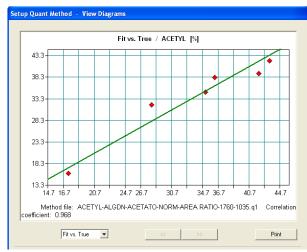

### Resultados TGA


### Algodón acetilado



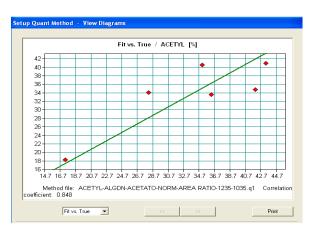
| Muestra | GS   | $T_d({}^{\circ}C)$ | $T_{dm}({}^{\circ}C)$ |
|---------|------|--------------------|-----------------------|
| A1      | 1.49 | 157.8              | 201.2                 |
| A2      | 1.85 | 134.6              | 164.9                 |
| A3      | 1.91 | 124.1              | 162.2                 |
| A5      | 1.95 | 118.6              | 158.6                 |
| A6      | 2.14 | 113.1              | 156.1                 |
| A7      | 2.30 | 169.3              | 349.4                 |

### 20 % de lignina

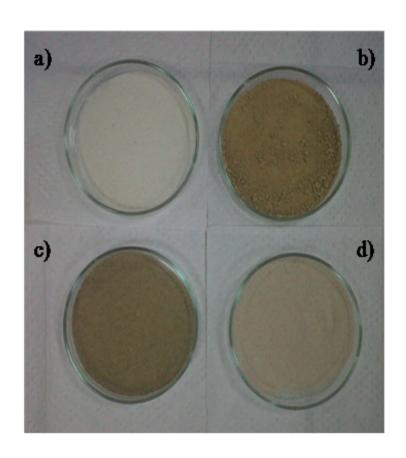


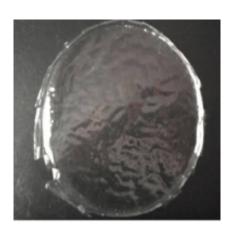



### **Resultados FTIR**







CALIBRACION PEAK: Ratio Area: 1760 /1035 cm-1






### **Resultados Casting**











- a) Acetato Comercial
- b) Algodón + 15% Lignina

- c) Aserrín tratado 16% lignina
- d) Algodón acetilado

### **Conclusiones**

- □La acetilación de celulosa de aserrín de pino radiata en presencia de lignina favorería la obtención de un material compuesto con características termoplásticas.
- □La presencia de lignina en el aserrín parece no limitar el proceso de acetilación por impedimentos del tipo estéricos.
- ☐ Se proyecta posible la obtención de un material termoplástico compuesto a base de acetato de celulosa desde pulpa de biomasa de baja pureza como el aserrín de pino radaita.







# Efecto del contenido de lignina sobre la acetilación de aserrín de madera de pino radiata

1\*Miguel Pereira, <sup>1</sup>Karol Peredo, <sup>1</sup>Jorge Reyes, <sup>1</sup>Gustavo Solís y <sup>2</sup>Alex Berg.

<sup>1</sup>Departamento de Ingeniería Química, <sup>2</sup>Unidad de Desarrollo Tecnológico, Universidad de Concepción.