Enhancing the Biochemical Methane Potential of Microalgae via Biomass Pretreatment

M. E. Alzate¹, <u>R. Muñoz¹</u>, F. Rogalla F², P. Icaran², F. Fdz-Polanco¹, S.I. Pérez -Elvira¹

1 - Dpt. of Chemical Engineering and Environmental Technology, University of Valladolid

2-AQUALIA Gestión Integral de Agua. S.A.

In a very close future.....

Climate change and CO₂ emission cuts.

- Depletion of fossil fuel reserves and global energy crisis......
- Global Water Crisis......

No problem man!!

Microalgae for bioenergy production Microalgae for CO₂ capture Microalgae for Wastewater Treatment

Green Energy Production during wastewater treatment

Biodiesel & Bioethanol

Require high quality biomass Axenic microalgae cost (5-20 €/kg) Need for methanol (transterification) Need for Energy-intensive distillation Glicerine as byproduct

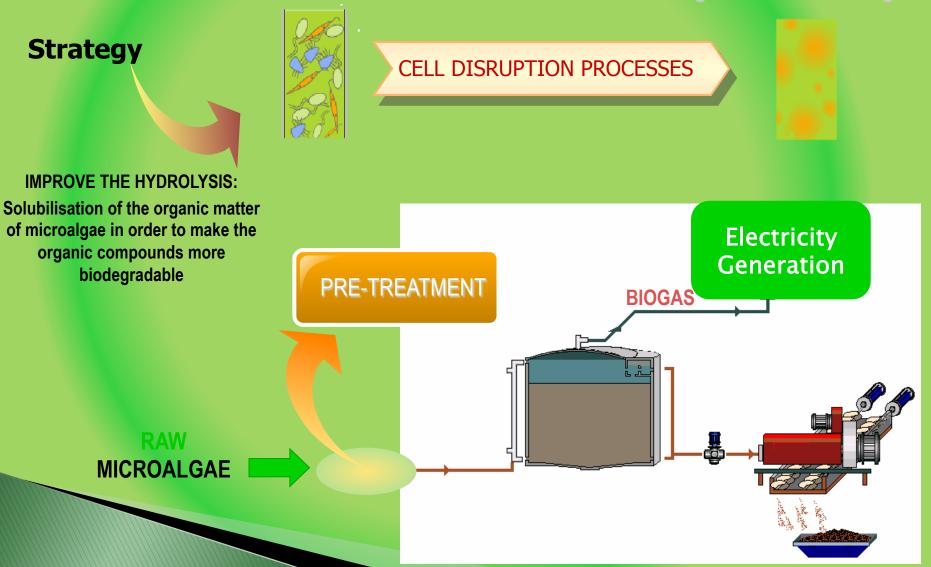
Biodiesel

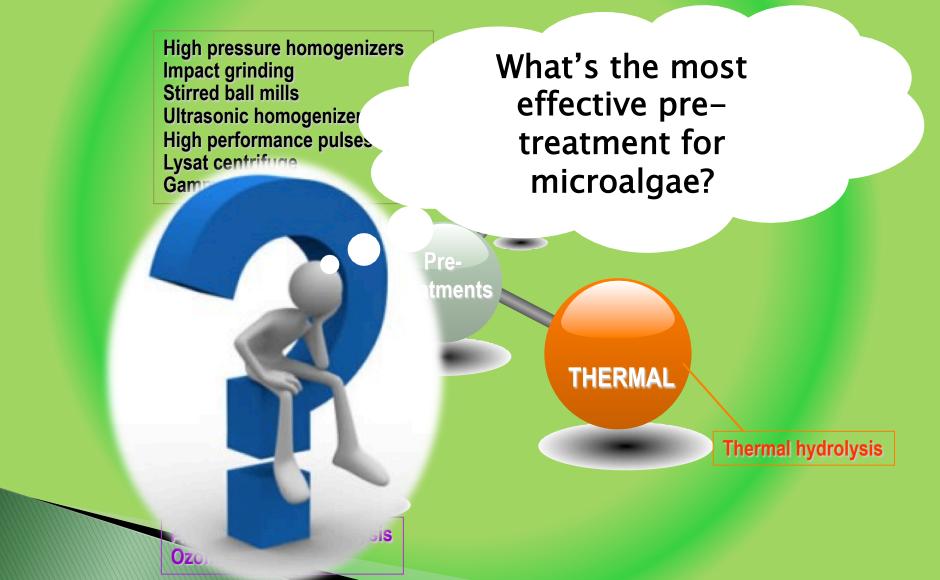
Biogas

- Use of residual biomass
- No need for microalgae drying
- Simple Technology
- Nutrients Recovery Potential No additional waste

Biogas as a promising green energy source

Biogas Production in Europe

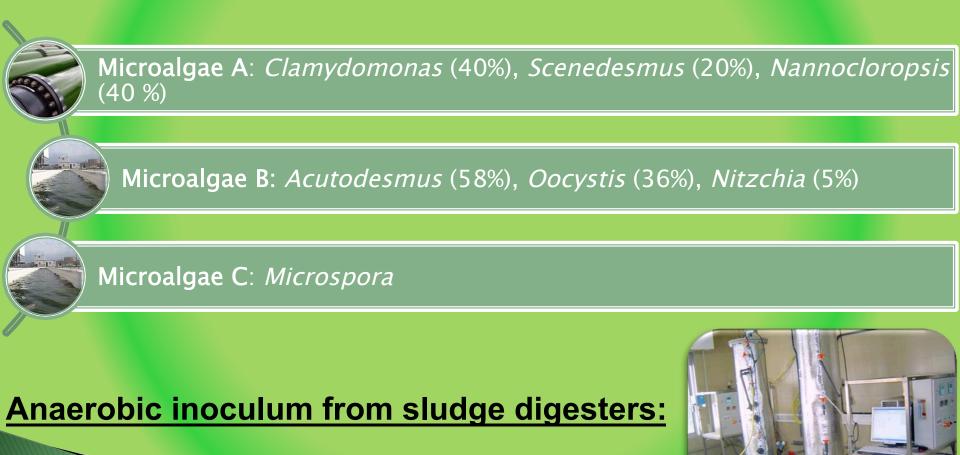

 Few Systematic studies exploring the Biochemical Methane Potential (BMP) of microalgae

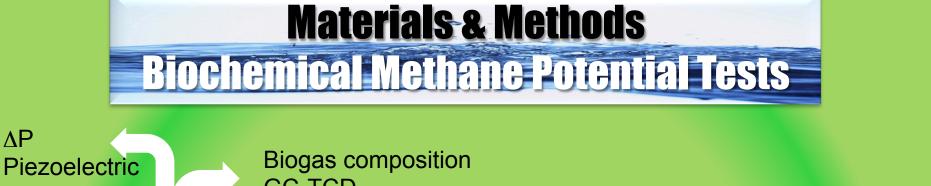

• Strong cell walls \rightarrow Low CH₄ productivities

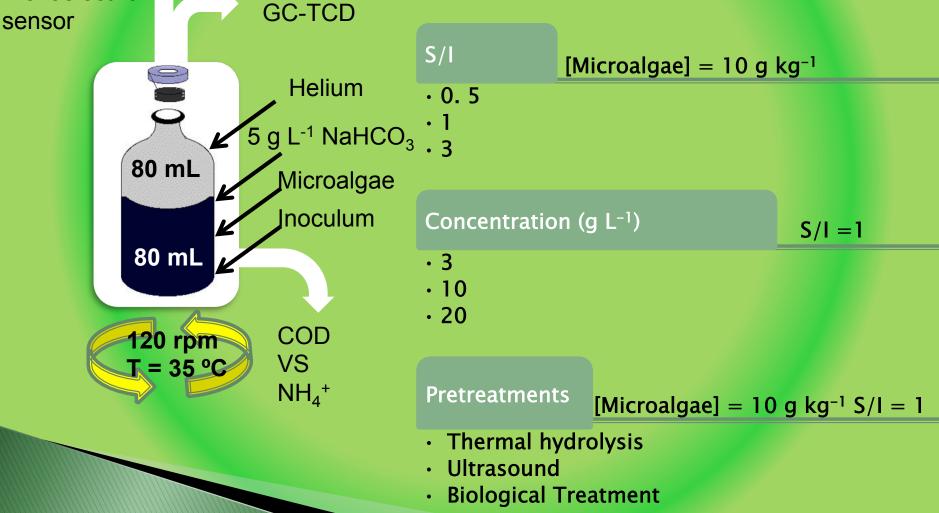
Microalgal Biomass Pretreatment

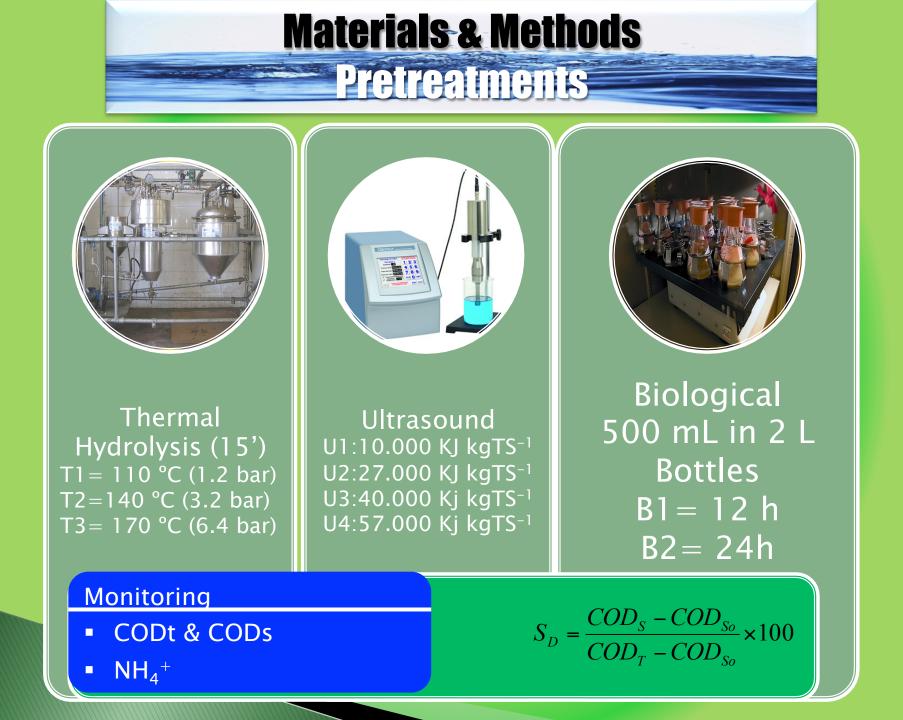
Enhancement of the Anaerobic Digestion of Microalgae

Objective 1:


Evaluation of the Influence of Substrate/Inoculum Ratio, Microalgae Concentration, Microalgae species on the BMP


Objective 2:


Evaluation of the Influence of microalgae pretreatment on the BMP



Three different microalgae:

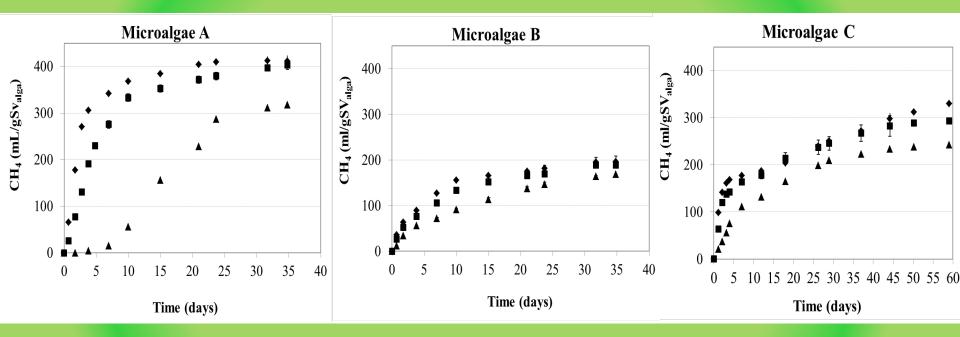


Figure 1: Time course of methane productivity at a S/I ratio of 0.5 (♦), 1 (■) and 3 (▲)

Microalgae species do matter.... Optimum S/I to determine the BMP = 0.5Microbial inhibition at a S/I of 3

Figure 2: Time course of CH₄ productivity at 3gTS/kg; (o), 10gTS/kg (■) and 20gTS/kg (★);

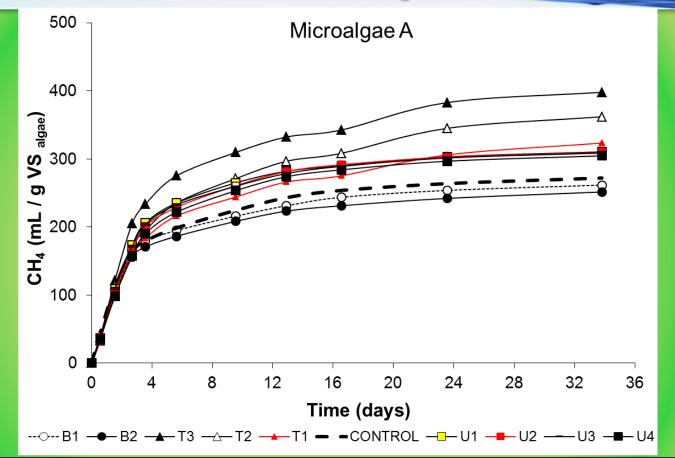
Microalgae species do matter..... Optimum biomass concentration of 20 g kg TS⁻¹

Table 1

Influence of the S/I ratio and biomass concentration on the final ammonium concentrations, ammonium released and biodegradability for microalgae A (VS/TS = 0.79), B (VS/ TS = 0.83) and C (VS/TS = 0.90).

Microalgae	S/I ratio	TS concentration (g/kg)	Total ammonium (mg-N/L)	Ammonium released (mg N/gVS _{algae added})	Ammonium released (mg N/gVS _{algae eliminate})	Biodegradability (%)
Α	0.5	10	1159±5	118±1	170 ± 7	70 ± 2
	1.0	10	951 ± 7	102 ± 1	149±5	68 ± 2
	3.0	10	697 ± 16	84±3	156±3	54 ± 1
	1.0	20	1485 ± 5	48±0	79±1	60 ± 0
	1.0	3	393 ± 40	80±3	128±8	62 ± 1
В	0.5	10	1079 ± 7	103 ± 3	344 ± 10	30 ± 2
	1.0	10	817	81	283	27 ± 2
	3.0	10	561 ± 47	64±8	251 ± 31	26 ± 0
	1.0	20	1331 ± 21	31±2	93 ± 7	33 ± 0
	1.0	3	374 ± 11	67±4	346 ± 28	20 ± 0
С	0.5	10	1141 ± 33	64±8	97 ± 9	66 ± 2
	1.0	10	848 ± 34	48±7	79±6	60 ± 4
	3.0	10	594 ± 23	50±3	102 ± 6	50 ± 0
	1.0	20	1138 ± 8	19±1	27 ± 1	70 ± 1
	1.0	3	333 ± 12	13±4	22 ± 7	59 ± 0

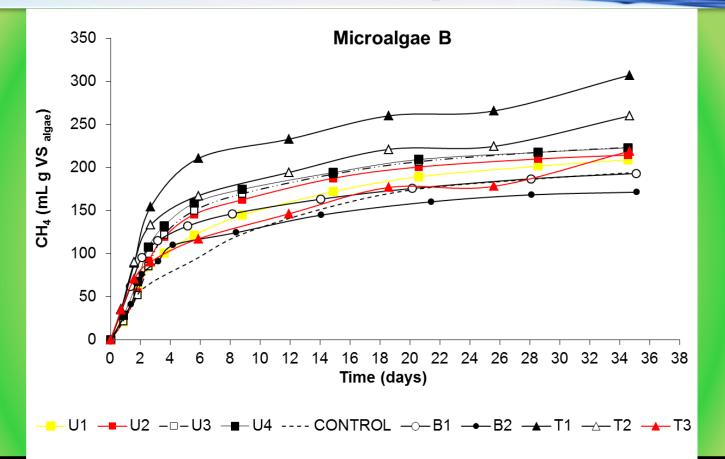
Final $[NH_4^+] < 1500 \text{ mg N/L} \rightarrow No inhibition$ No correlation of NH_4^+ release with S/I, [biomass] or type of microalgae


Results & Discussion Influence of Biomass pretreatment

	Pretreated microalgae A					Pretreat	Pretreated microalgae B			
Pretreatment	S _D (%)	N-NH4 ⁺ (mg/l	.) TN (mg/L)		Pretreatment	S _D (%)	N-NH4 ⁺ (mg/L) TN	(mg/L)	
Control U1 U2 U3 U4 B1 B2 T1 T2	0 14 28 30 32 11 9 9 16	7 5 30 32 30 57 34 6 22	112 239 537 361 378 233 239 191 258		Control U1 U2 U3 U4 B1 B2 T1 T2 T3	0 24 48 53 60 21 19 22 37 63	28 134 54 66 55 80 89 28 70 42	47 33: 60 63 32 35 25 43 59	3 2 4 0 5 4 6	
T3	¥ 32	25	433		ed microalgae C					
			Pretreatment Control U1 U2 U3 U4 B1 B2 T1 T2 T3	S _D (%) 0 30 56 57 62 29 29 29 38 39 40	N-NH4 ⁺ (mg/L) 23 40 26 79 100 22 59 34 40 43	TN (mg 23 199 420 450 514 244 257 190 263 399	/L)			

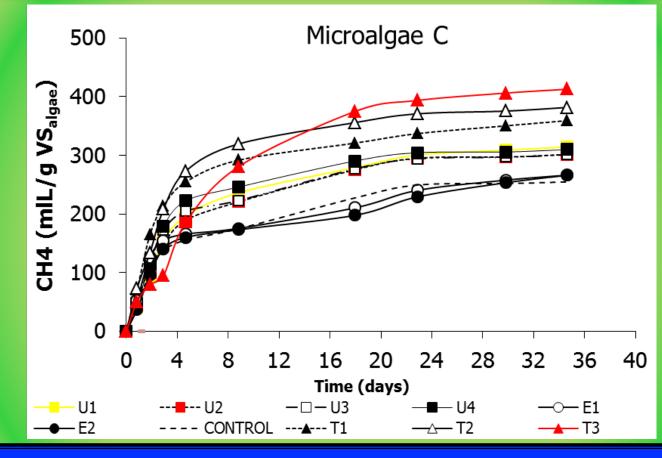
TN also increases at increasing energy inputs Nitrogen release mainly as organic N

Results & Discussion


Influence of Biomass pretreatment

TH supported best CH₄ production rates during the first 4 days Biological pre-treatment reduced the final CH₄ productivities Highest Increase in final CH₄ productivity for TH at 170 y 140 °C No effect of energy input during ultrasound

Results & Discussion


Influence of Biomass pretreatment

TH supported higher CH₄ production rates during the first 4 days Biological pre-treatments reduced final CH₄ productivities Highest Increase in final CH₄ productivity for TH at 170 y 140 °C No effect of energy input during ultrasound

Results & Discussion

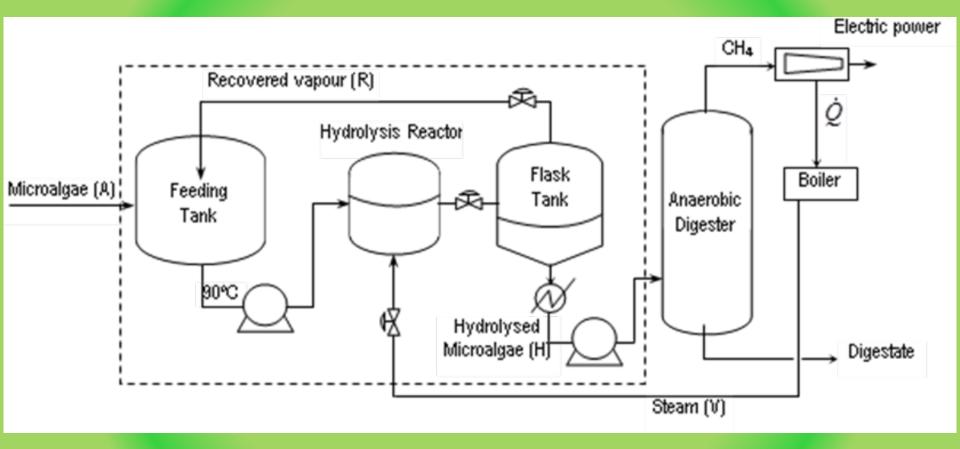
Influence of Biomass pretreatment

TH supported best CH₄ production rates during the first 4 days Biological do not increase final CH₄ productivity Decreased CH₄ productivity at increasing T No effect of energy input during ultrasound

- Microalgae species significantly influences CH₄ productivity (190-400 mL g VS⁻¹)
- An optimum S/I of 0.5 for BMP assays
- NH₄⁺ released was independent from the S/I ratio and microalgae concentration
- No correlation between the solubilization factor and CH4 productitivty
- Thermal hydrolysis the most effective Pre-treatment (60%)
- Biological pretreatment decrease CH₄ productivity

The effect of ultrasound independent from the energy input

Acknowledgments


CONICYT and the Spanish Ministry of Economy and Competitiveness (CENIT-VIDA CEN-20101026)

More information:

www.iqtma.uva.es/envtech

Sara Perez: sarape@iq.uva.es

