

Determinación de un método de dosificación de agentes oxidantes y su efecto en la selectividad de un proceso de pretratamiento de lignina en medio alcalino

Diego Castro Rocio Sierra

Ill Congreso Latinoamericano Biorrefinerías Ideas para un mundo sustentable 19 al 21 de noviembre de 2012, Pucón, Chile

eas para un mundo sustentable al 21 de noviembre de 2012, Pucón, Chile

Biocombustibles de segunda generación

Costos del Pretratamiento (SSF)

Aden, A., Ruth, M., Ibsen, K., Jechura, J., Neeves, K., Sheehan, & Wallace, B. (2002). Lignocellulosic Biomass to Ethanol Process Design and Economics Utilizing Co-Current Dilute Acid Prehydrolysis and Enzymatic Hydrolysis for Corn Stover (1st ed.), National Renewable Energy Lab, Golden, CO.

MixAlco® Process

Adaptado de V. Pham, M. Holtzapple, M. EL-Halwagi. (2011). Techno-economic analysis of biomass to fuel conversion via the MixAlco® process.

Costos del pretratamiento (MixAlco®)

Adapted from: P. Gousamme. (2011) Development of a simulation tool of the MixAlco[®] technology to be applied in Colombia Adapted from: V. Pham, M. Holtzapple, M. EL-Halwagi. (2011). Techno-economic analysis of biomass to fuel conversion via the MixAlco[®] process.

6

Efectos del pretratamiento químico

Sierra, R., Smith, A., Granda, C., & Holtzapple, M. (2010). Producing fuel and chemicals from lignocelluslosic biomass. *Chemical Engineering Progress*, S10-S18.

Caracterización de la biomasa

Efectos del pretratamiento químico

Pedersen M, Meyer, A. (2010). Lignocellulose pretreatment severity –Relating pH to biomatrix opening. *New Biotechnology.* (27) 6 pg 739-749

Universidad de los Andes Pretratamientos de deslignificación comunes

Etapa	Símbolo	рН	T (°C)	tiempo (h)	Descripción
Cloro	С	0.5-1.5	20-30	0.3-1.5	Ruptura de enlaces de lignina a partir de cloro.
Extracción Alcalina	E	11-12	50-95	0.75-1.5	Extracción de lignina con solución alcalina CaO.
Hipoclorito de Sodio	н	8-10	35-45	1-5	Deslignificación con NaClO.
Dióxido de Cloro	D	3.5-6	60-80	3-5	Degradación de lignina con ClO ₂
Peróxido de Hidrógeno	Р	8-10	60-70	2-4	Degradación de lignina con H2O2
Oxígeno	0	10-12	90-110	0.3-1	Degradación de lignina con O2 bajo presión.

Universidad de los Andes Pretratamientos de deslignificación comunes

Dyer, T. J., & Lucian A. Lucia, a. A. (1998). MINI OXYGEN STAGES: MORE DELIGNIFICATION WITH LESS CAPITAL. *Institute of Paper Science and Technology*. Atlanta, Georgia.

Método	Temperatura (°C)	Tiempo (min)	рН	log(R _o)	log(<i>R*_o</i>)
Hidrólisis ácida	30	60	1	-0.3	5.7
Alcalino	140	10	13	2.2	8.2
Explosión de vapor	180	10	2	3.4	8.4
Explosión de vapor	250	10	1	5.4	11.4

$$R_{o} = \int_{a}^{b} \exp\left(\frac{T(t)-100}{14.75}\right) dt = t \times \exp\left(\frac{T(t)-100}{14.75}\right)$$
$$\log(R_{o}^{*}) = \log(R_{o}) + |pH - 7|$$

Pedersen M, Meyer, A. (2010). Lignocellulose pretreatment severity –Relating pH to biomatrix opening. *New Biotechnology.* (27) 6 pg 739-749

$$-\frac{dL_i}{dt} = k_i \left[\mathbf{OH}^{-} \right]^{m,i} \left[\mathbf{O}_2^{-} \right]^{n,i} L_i$$

i : varias categorías dependiendo en la reactividad

$$-\frac{dL_{\text{Total}}}{dt} = \sum_{i=1}^{5} -\frac{dL_i}{dt}$$

Susilo, J. & Bennington, C.P.J. (2007). Modelling Kappa Number and Pulp Viscosity in Industrial Oxygen Delignification Systems. *Chemical Engineering Research and Design*. Vol. 85, No. 6, (n.d.), pp. 872-881, ISSN 0263-8762.

 $Y_L = \frac{\text{lignina recuperada (g)}}{\text{lignina en biomasa sin pretratar (g)}}$

 $Y_i = \frac{\text{carbohidrato } i \text{ recuperado } (g)}{\text{carbohidrato } i \text{ en biomasa sin pretratar } (g)}$

Modelamiento cinético de la degradación de lignina

Sierra R, García L, Holtzapple M. (2011). Selectivity and delignification kinetics for oxidative short-term lime pretreatment of poplar wood, part I: Constant-pressure. Vol. 27, No. 4, pp. 976-985.

Modelamiento cinético de degradación de lignina

Ectudio	Reactividad	Orden de Reacción			Energía de	Freq.
Estudio		[OH ⁻]	[O ₂]	L	activación	Factor
Iribane et al	Fast	1.2	1.3	1	67	36×10 ¹¹
1997	Slow	0.3	0.2	1	40	6×10 ⁴
Vincent et al, 1997	Fast	0	0.4	1	24.2	27.5
	Slow	0.39	0.38	1	46.3	7667
Myers et al	Fast	0	0.4	1	31.6	1.5×10 ⁵
1989	Slow	0.875	0.43	1	61.4	1.7×10 ⁻⁵
Hsu et al 1986	Fast	0.78	0.35	3.1	36	2.46
	Slow	0.70	0.74	3.1	71	143.49
Olm et al 1979	Fast	0.1	0.1	1	10	-
	Slow	0.3	0.2	1	45	_

Yun Ji, Clayton Wheeler, and Adriaan van Heiningen; 2007

Cálculo de selectividad

$$S_{di} \equiv \frac{\frac{dY_L}{dt}}{\frac{dY_i}{dt}} = \frac{\sum_j k_{Lj} Y_{Lj}}{\sum_j k_{ij} Y_{ij}}$$

$$\frac{\frac{dY_{L}}{dt}}{\frac{dY_{i}}{dt}} = \frac{a_{Lf}exp\left(-\frac{E_{Lf}}{RT}\right)Y_{Lf} + a_{Ls}exp\left(-\frac{E_{Ls}}{RT}\right)Y_{Ls}}{a_{if}exp\left(-\frac{E_{if}}{RT}\right)Y_{if} + a_{is}exp\left(-\frac{E_{is}}{RT}\right)Y_{is}}$$

Caracterización de la biomasa: Análisis húmedo

NREL. Scarlata, C., Slutier, J., Termpleton, a. D., Crocker, D. A., Hames, B., & Ruiz, R. (2008). Combined LAPS Colorado.

Caracterización de la biomasa: Método indirecto – NIR con PLS

- ✓ Técnica rápida y no invasiva.
- ✓ Económica
- ✓ Más muestras
- ✓ Calidad aceptable

Quimiometría Regresión de mínimos cuadrados parciales

Matriz **Y**: *m* componentes x *n* muestras. Matriz **X**: *n* espectros x *p* long. Onda. Matriz **b**: parámetros de la regresión.

Descomposición de matrices X y Y:

 $\mathbf{X} = \mathbf{T}\mathbf{P'} + \mathbf{E}$

 $\mathbf{Y} = \mathbf{U}\mathbf{Q'} + \mathbf{F}$

Donde:

- **T**: matriz de calificaciones (scores) de **X**.
- **U**: matriz de calificaciones (scores) de **Y**.
- P': matriz de cargas (loadings) de X.
- Q': matriz de cargas (loadings) de Y.

Otto, M. (1999). Chemometrics: Statistics and Computer Application in Analytical Chemistry. Weinheim: WILEY-VCH.

Determinación de la curva de calibración

1. Secado, molienda y tamizado de biomasa.

Universidad de

los Andes

- 2. Pretratamiento de biomasa
 - En medio alcalino
 - En medio ácido

Secado de bagazo de caña a 45°C por 48 horas.

Tamizado de biomasa.

Preparación de muestras en la curva de calibración

No.	Fracción lignina	Medio ácido (g)	Medio alcalino (g)
1	0.600	0.000	0.500
2	0.625	0.031	0.469
3	0.650	0.063	0.438
4	0.675	0.094	0.406
5	0.700	0.125	0.375
6	0.725	0.156	0.344
7	0.750	0.188	0.313
8	0.775	0.219	0.281
9	0.800	0.250	0.250
10	0.825	0.281	0.219
11	0.850	0.313	0.188
12	0.875	0.344	0.156
13	0.900	0.375	0.125
14	0.925	0.406	0.094
15	0.950	0.438	0.063
16	0.975	0.469	0.031
17	1.000	0.500	0.000

Resumen Curva de Calibración

- 17 muestras
- Contenido de humedad < 10%
- Tamaño de partícula < 178 mm
- Método de corrección de la dispersión: Segunda derivada (Savitzky-Golay)
- 1100 a 2500 nm

Muestras en la curva de calibración.

Espectros de las muestras de la curva de calibración

Transformación de segunda derivada Software: Vision

Picos sobresalientes

Validación cruzada de la curva de calibración

Universidad de
los Andes

Sample validation	Correlaton Coeff	Standard deviation error	PREŜŜ	Factor
-	0,9981	0,641	11,42	4
1	0,9983	0,634	11,67	6
2	0,9982	0,63	11,37	5
3	0,9984	0,6342	9,48	6
4	0,9979	0,6754	12,019	4
5	0,9987	0,5888	9,979	6
6	0,9986	0,6276	13,42	6
7	0,9985	0,6432	10,709	6
8	0,9983	0,6233	12,22	_ 4
9	0,9984	0,6378	11,67	5
10	0,9986	0,6198	9,202	6
11	0,9984	0,6315	12,64	5
12	0,9985	0,6133	10,98	5
13	0,9983	0,6425	12,63	5
14	0,9995	0,3757	6,769	7
15	0,9986	0,6072	10,24	6 P
16	0,9982	0,6578	12,59	6
17	0,9982	0,6265	11.81	5 0

Prediction Error Sum of Squares

Residuales después de la validación cruzada

Estadísiticos de los modelos

Lignina

- RER (Range Error Ratio): 4.05
- PRESS (Prediction Error Sum of Squares): 6.79

Carbohidratos

- RER (Range Error Ratio): 3.25
- PRESS (Prediction Error Sum of Squares): 9.20

Pretratamientos E+P

proceso E+P	Tiempo (h)	Temperatura (°C)	Tiempo (h)	Temperatura (°C)
1A	2	80	0.5	50
1B	2	80	0.5	70
1C	2	80	1	50
1D	2	80	1	70
2A	2	100	0.5	50
2B	2	100	0.5	70
2C	2	100	1	50
2D	2	100	1	70
3A	4	80	0.5	50
3B	4	80	0.5	70
3C	4	80	1	50
3D	4	80	1	70
4A	4	100	0.5	50
4B	4	100	0.5	70
4C	4	100	1	50
4D	4	100	1	70

proceso P+E	Tiempo (h)	Temperatura (°C)	Tiempo (h)	Temperatura (°C)
A1	0.5	50	2	80
A2	0.5	50	2	100
A3	0.5	50	4	80
A4	0.5	50	4	100
B1	0.5	70	2	80
B2	0.5	70	2	100
B3	0.5	70	4	80
B4	0.5	70	4	100
C1	1	50	2	80
C2	1	50	2	100
C3	1	50	4	80
C4	1	50	4	100
D1	1	70	2	80
D2	1	70	2	100
D3	1	70	4	80
D4	1	70	4	100

Parámetros del modelo cinético

31

Métodos probados en este estudio

Universidad de

los Andes

Parámetros del modelo cinético

Proceso	Parámetro	Lignina	Glucosa	Xilosa
	Y_{ij0}	0,223	0,171	0,116
	a_{if}	26,4	1,50E+05	1,53E+05
E + P	E_{if}	27,8	58,8	60,9
	a_{is}	2,50E-03	0,00837	0,0137
	E_{is}	120	12,7	16,9
	Y _{ij0}	0,320	0,962	0,234
	a_{if}	14818	14760	14783
P + E	$E_{i\!f}$	112	101	94,9
	a_{is}	0,0402	0,0469	0,000156
	E_{is}	12,1	4,78	2,32

Resultados: Conversión de lignina

Selectividad de glucosa

Selectividad de xilosa

- Universidad de Ios Andes
 - El método analítico por espectroscopía NIR fue eficiente en la obtención de las concentraciones de los constituyentes presentes en la biomasa. El tiempo de análisis de las muestras pretratadas fue menor con respecto al protocolo tradicional.
 - Por medio de los parámetros calculados del modelo cinético, se logró evaluar la selectividad de los carbohidratos. La glucosa presentó mayor grado de selectividad con respecto a la xilosa en los dos procesos de pretratamiento estudiados.
 - ✓ El proceso de pretratamiento que inicia con una etapa oxidativa seguida de una alcalina (P+E), generó mayor conservación de azúcares con respecto al proceso inverso (E+P).

Grupo de desarrollo de Productos y Procesos. Departamento de Ingeniería Química Universidad de los Andes Bogotá Colombia

Diego Castro Ingeniero Químico Universidad de los Andes

Personal del laboratorio