The Integrated Biomass Supply Systems (IBSS) Partnership: Technology and Supply Systems for Integrated Production of Advanced Biofuels in the Southeastern US

Stephen S Kelley Forest Biomaterials North Carolina State University

USDA ARBORGEN

AUBURN

NC STATE UNIVERSITY

The University of Georgia

IBSS Executive Team

 Steve Bobzin, Maud Hinchee, Bill Hubbard, Steve Kelley, Tim Rials, Steve Taylor

NCSU IBSS Process Metrics and Modeling Team

 Hou-min Chang, Jesse Daystar, Ronalds Gonzalez, Hasan Jameel, Lily Xiao, Sunkyu Park, Richard Phillips, Trevor Treasure, Rich Venditti,

Forest Biomaterials – Skills for Integrated Approaches

Outline

- US National view and goals
- IBSS approach and partners

USDA ARBORGENY

- Effects of biomass feedstocks on tar formation
- Supply chain and process modeling allow for high resolution financial and life cycle analysis

AUBURN

Conclusions

DOE focus on fuels, not power (oil vs. coal and natural gas, or other renewables) sive goals:

- Reduce the nation's dependence on foreign sources of energy
- Reduce GHG emissions from the transportation sector
- Move renewable fuels into the marketplace

Established production volumes for the Renewable Fuel Standard Program (RFS), increasing the supply of renewable fuels to 36 billion gallons by 2022

Focuses on developing advanced biofuels to support meeting the RFS

Renewable Fuel Standard

Integrated Biorefinery Projects

- 11 IBRs will produce hydrocarbons from biomass
- 12 IBRs will produce cellulosic ethanol from biomass

Project Scale Key Research and Development Pilot Demonstration

- Commercial
- Complete/Inactive

For more information visit: <u>http://www.eere.energy.gov/biomass/</u> integrated_biorefineries.html

DOE focus has expanded to 'replacing the whole barrel'

Greater focus needed on RDD&D for a range of technologies to displace the *entire* barrel of petroleum crude

- U.S. spends more about \$1B each day on crude oil imports*
- Only about 40% of a barrel of crude oil is used to produce gasoline
- Cellulosic ethanol can only displace gasoline fraction
- Reducing dependence on oil requires replacing diesel, jet, heavy distillates, and a range of other chemicals and products

Products Made from a Barrel of Crude Oil (Gallons) in 2010

Biomass and TC Processes

- TC processes can use biomass from a wide variety of sources
- Sasol has been making hydrocarbons from coal derived syngas for 40 years
- All methanol and ammonia, and many other chemicals are made from natural gas derived syngas
- Biomass is 40% oxygen, and you buy biomass by the ton (\$/ton), so you are buying oxygen
- Ethanol is 33% oxygen and is solid by volume/caloric value (selling oxygen)
- Bydrocarbons (gasoline, diesel, jet, etc.) has no oxygen
- **The oxygen is lost as H_2O or CO_2**
- Carbon is required for the hydrocarbon product, minimize CO₂
- Hydrogen, made from natural gas or reformed biomass, is required to remove H₂O

TC processes to remove oxygen

Thermochemical Conversion Platform

RDD&D projects are improving the thermochemical conversion of cellulosic biomass into biofuels such as gasoline, diesel, and jet fuel.

Deconstruction

- Ground and dried biomass is heated in reactors to produce gas, solid, and liquid intermediates
- process temperature determines proportions

Transformation

- Synthesis gas is cleaned (inorganics and CO₂ removal) and conditioned (tar reforming) and converted into biofuels and chemicals
- Bio-oils are stabilized and upgraded (O₂ removal) to produce biofuels and chemicals

Gasification to EtOH Cost Curves

Fast Pyrolysis to Hydrocarbons Costs Curves

Thermochemical Conversion of Woody Feedstocks to Hydrocarbons via Fast Pyrolysis

The IBSS Partnership:

Progress Toward the Southeast's Advanced Biofuels Industry

IBSS works to address the complete integration from the land to the fuel use, and financial and social acceptance

\$15 mil, 5 yrs

- Biofuels production is complex (if this was easy it would be done)
- Biofuels requires an allocation of very large land areas, and the 'permission' from landowners and communities
- The cost and quality of the biomass are important for both Biochem. and Thermochem. processes.

USDA ARBORGEN

<u>AUBURN</u>

NC STATE UNIVERSITY

The University of Georgia

The IBSS Partnership's Footprint

The Partners

- ArborGen
- Auburn University
- Ceres (not shown, Thousand Oaks, CA)
- NC State University
- University of Georgia
- University of Tennessee

O The Collaborators

- Fort Valley State University
- Tuskegee University
- Alabama A&M University
- Tennessee State University
- Oak Ridge National Laboratory
- USFS-Southern Research Station
- Louisiana-Pacific Corp, Nashville, TN
- Rentech, Inc. (not shown, Commerce City, CO)
- DuPont/Genera Energy, Vonore, TN

The Focal Points (Research)

- Louisiana-Pacific, Roxboro, NC
- Genera Energy, Inc., Vonore, TN

The Field Trials

USDA ARBORGEN AUBURN

The University of Georgia

IBSS Rentech Hydrocarbon Partner

- 20 tpd biomass gasifier now operational (500 hours)
- Harvested, preprocessed, and shipped SR biomass
- Hybrid poplar (20 dry tons)
- Loblolly pine (60 dry tons)
- Addressed material handling issued

USDA

ArborGei

- Size reduction approach
- Moisture content
- Particle flow
- Bio-syngas to FT reactor

Fischer-Tropsch Reactor BECE - Commerce City, CO

The University of Georgia

Outline

- US National view and goals
- IBSS approach and partners

USDA

Arborgen

- Effects of biomass feedstocks on tar formation
- Supply chain and process modeling allow for high resolution financial and life cycle analysis

AUBURN

NC STATE UNIVERSIT

The University of Georgia

Conclusions

The IBSS partnership footprint

Whole System Costs

ARBORGEN

USDA

NC STATE UNIVERSITY

The University of Georgia

Py-MBMS screening

Py-MBMS - furnance design

Set up to run

 as an high-throughput analytical tool with autosampler, 3 min per sample
 as a 'minigasifier', screen reactor conditions, catalysts

USDA

Arborgen

Set up

AUBURN

Oven temperature: 550 – 950°C Gas 1: Steam Gas 2: Oxygen Gas 3: Helium MBMS: scan range: 10-600 amz

NC STATE UNIVERSITY

TT)

The University of Georgia

Complex patterns – Multivariate Tools

- PCA : reduction and redefinition of original variables
 - \rightarrow A smaller number of latent variables (PC)
 - Interpret similarities or differences between samples with sample groupings
- *PLS* : modeling of both the X- and Y-matrices

→ Latent variables in X (Py-MBMS spectra, factor) and latent variables in Y (characteristics)

Describe the relationship between the two groups of variables or to predict new values

Variations between species

USDA

ArborGe

Biomass samples evaluated using py-MBMS include: 1) 400 pine samples, 2) 200 eucalyptus, 3) 100 poplar, and 4) 100 switchgrass
 TC processes, i.e., higher BTU content is desired, but Tars are a major cost barrier, and the source of tars are unclear

NC STATE UNIVERSIT

The University of Georgia

Variations within species – Southern Pine

- Costs, composition and consistency are all key for a commercial operation
- Looking at the effects of genetics and site (ash could have a major impacts on tars)

Arborgen

USDA

AUBURN

 $(\mathbf{\widehat{\Pi}})$

The University of Georgia

Tar variations within and between species

AUBURN

 $(\mathbf{\widehat{\Pi}})$

The University of Georgia

NC STATE UNIVERSITY

- Tar formation different between species
- Tar formation highly varied within Switchgrass

USDA

Arborgen

Switchgrass tars are not related to storage

Time-resolved profiles

Biomass/Tars time resolved MBMS

PC 1 – extractives, simple fragments

USDA

Arborgen

E H

- PC 2 Hemicelluloses
- PC 3 Primary Lignin
- PC 4 Lignin fragments (demethoxylated)
- PC 5 Cellulose fragments
- PC 6 Tart formation

Outline

- US National view and goals
- IBSS approach and partners

USDA

Arborgen

- Effects of biomass feedstocks on tar formation
- Supply chain and process modeling allow for high resolution financial and life cycle analysis

AUBURN

NC STATE UNIVERSIT

The University of Georgia

Conclusions

Effective modeling requires consideration of the INTEGRATED SYSTEM

- Two major systems 1) biomass production/supply chain, 2) fuel production; fuel utilization will become more important as production increases
- Biomass production is complex, components that <u>scale</u> with land, with annual production, and with composition
 - Land cost of land, planting and harvesting, chemicals, (water)
 - Production tons per acre, transportation, percent of land needed
 - Composition % carbohydrate, value added chemicals

USDA ARBORGEN

- Fuel production larger scale is ALWAYS better, but typical engineering calculations for scale, different conversion processes have different cost curves (\$ of capital/gal of fuel)
- Both the financial and Life Cycle analyses require consideration of the integrated system

AUBURN UNIVERSITY

NC STATE UNIVERSIT

The University of Georgia

Biofuels production system

USDA

NREL Indirect Gasification and Mixed Alcohol Synthesis of Lignocellulosic Biomass Model

THE REAL

ARBORGEN

AUBURN

NC STATE UNIVERSITY

 $(\mathbf{\widehat{\Pi}})$

The University of Georgia

Variations within species – Southern Pine

USDA

NC STATE UNIVERSITY

 $(\mathbf{\widehat{\Pi}})$

The University of Georgia

Costs, composition and consistency are all key for a commercial operation – fuel; process heat

Arborge

AUBURN

Effects of composition on financial return (BC)

USDA

 $(\mathbf{\widehat{n}})$

Moisture content is a unique issue for TC

AUBURN

USDA

Arborgen

Biomass production systems

Biorefinery

Dilute acid
<u>Plant location</u>
<u>Thermochem</u>
<u>Complete financial analysis</u>
<u>GL</u>
ZeaChem

Integrated Supply and Financial Models

ARBORGEN

Land available to grow biomass?
What are the strategies for conversion of land use?
Whole tree chemical composition?

USDA

•Biometrics •\$/acre; \$/BDT •Ton Carbohydrate/acre

AUBURN

• \$/BDT

Freight

 $\widehat{\Pi}$

The University of Georgia

•<u>\$/BDT</u> •<u>Sugar/Biomass loss</u>

Harvesting

Biomass production/supply chain

Description	Loblolly Pine	Eucalyptus	Unmanaged Hardwood	Switchgrass	Sweet Sorghum	Forest Residues	
Productivity (dry tonne ha ⁻¹ year ⁻¹)	12.80	13.50	2.24	13.50	11.77	0.76	
Rotation length (years)	12	4	50	n/a	n/a	n/a	
Harvesting window	Year round	Year round	Year round	Three months	Three months	Year round	
Moisture content	45%	45%	45%	16%	74%	45%	
Delivery form	Logs	Logs	Logs	Square bales	Cane	Chips	
Establishment cost (\$/ha)	637	552	0.0	181	416	n/a	
Maintenance cost (\$/ha)	62.4 ¹	62.4 ¹	0.0	85.3 ²	n/a	n/a	

AUBURN UNIVERSITY $(\widehat{\mathbf{I}})$

The University of Georgia

NC STATE UNIVERSITY

1 = Second year of plantation; 2 = Maintenance cost per year, year 2 through 10

USDA ARBORGENS

The Value of Integrated Supply

- Reduce risk of supply chain disruptions
- Weather extremes
- Insects/disease

ARBORGEN

USDA

- Minimize or eliminate storage costs with 'just in time' delivery
- Optimize biomass quality and process performance
- Maximize biomass yield
- Increase environmental benefits

The University of Georgia

NC STATE UNIVERSITY

Meet landowner goals

Biomass production/supply chain – details

								Unmanaged											
			Loblolly Pine		Eucalyptus		Hardwood		Forest Residues			Switchgrass			Sweet Sorghum				
	Productivity level	L	М	Н	L	М	Н	L	M	Н	L	М	Н	L	M	Н	L	М	Н
-uel Use	Freel commuting as the sting	Liter per dry ton		Liter per dry ton		Liter per dry ton		Lite	iter per dry ton		Liter per dry ton		Liter per dry ton						
	Fuel consumption, collection	-	-	-	-	-	-	-	-	-	0.05	0.04	0.03	-	-	-	-	-	-
	Plantation establishment and	0.86	0.65	0.52	2.47	1.85	1.48	-	-	-	0.61	0.45	0.36	-	-	-	-	-	-
	maintenance, diesel																		
	Plantation establishment and	0.04	0.03	0.03	0.12	0.09	0.07	-	-	-	8.0	6.0	4.8	3.93	2.95	2.36	-	-	-
-	maintenance, gasoline																		
	Harvesting, diesel	10.1	7.58	6.06	10.1	7.58	6.06	10.1	7.6	6.1	-	-	-	6.02	4.51	3.61	4.13	3.1	2.48
_	Storage													0.6	0.6	0.6	0.84	0.84	0.84
		Dry ton*km		Dry ton*km		Dry ton*km		Dry ton*km		m	Dry ton*km			Dry ton*km					
anspo	Transportation forest to facility	79	69	62	78	67	60	219	190	170	327	283	253	-	-	-			
	 Transportation farm to storage 	-	-	-	-	-	-	-	-	-	-	-	-	51	44	39	175	152	136
	Transportation storage to facility	-	-	-	-	-	-	-	-	-	-	-	-	9.5	9.5	9.5	31	31	31
-	Fertilizer	kg per Dry Ton		kg per Dry Ton		kg per Dry Ton		kg per Dry Ton		kg per Dry Ton			kg per Dry Ton						
ភូ	UREA	2.1	1.6	1.3	2.9	2.2	1.7	-	-	-	0.13	0.1	0.08	-	-	-			
	Phosphorus	-	-	-	-	-	-	-	-	-	-	-	-	1.6	1.2	0.96	3.43	2.57	2.06
	Potassium	-	-	-	-	-	-	-	-	-	-	-	-	15.83	11.88	9.5	1.7	1.27	1.02
	Lime	-	-	-	-	-	-	-	-	-	-	-	-	62.28	46.71	37.37	-	-	-
Ē	Nitrogen	-	-	-	-	-	-	-	-	-	-	-	-	8.47	6.36	5.08	-	-	-
e e	Herbicide	kg p	er Dry	Ton	kgp	kg per Dry Ton		kg per Dry Ton		kg per Dry Ton		kg per Dry Ton			kg per Dry Ton				
<u> </u>	General herbicide, glyphosate	0.03	0.01	0.01	0.08	0.04	0.03	-	-	-	0.002	0.001	0.001	-	-	-	-	-	-
	Pursuit	-	-	-	-	-	-	-	-	-	-	-	-	2.36	1.77	1.41	-	-	-
	MSO	-	-	-	-	-	-	-	-	-	-	-	-	3.31	2.48	1.99	-	-	-
_	2,4	-	-	-	-	-	-	-	-	-	-	-	-	1.14	0.85	0.68	-	-	-
	Alzarine 90 DF	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.19	0.14	0.11
	Dipel ES	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.2	0.15	0.12

Note: 453,592 BD metric tonnes /year, 10% covered area

The University of Georgia

NC STATE UNIVERSITY

AUBURN UNIVERSITY

USDA ARBORGENY

GHG emissions from biomass production

Note: 453,592 BD metric tonnes /year, 10% covered area

 (Π)

The University of Georgia

NC STATE UNIVERSITY

USDA Arborgen

Biomass production/supply chain

USDA

ARBORGEN

AUBURN

NC STATE UNIVERSITY

The University of Georgia

TRACI – Impact assessment methods *HUGE NUMBER OF* BACKGROUND ASSUMPTIONS

- Global warming
- Acidification
- Carcinogenics
- Non Carcinogenics
- Respiratory effects
- Eutrophication
- Ozone depletion
- Ecotoxicity
- Smog

Tool for the Reduction and Assessment of Chemical and other Environmental Impacts (TRACI)

USDA ArborGen

The University of Georgia

TRACI results for biomass production

Arborgen

USDA

sweet sorghum

 $(\mathbf{\widehat{n}})$

Conclusions

- Need to understand the context for your work
 - we are not running out of oil (cheap oil yes)

USDA

- we have to use marginal lands
- biofuels will be expensive, what is the policy driver
- Have to understand the process and scale issues, some systems are inherently difficult to scale down, with others the composition or energy density may offer opportunity
- Biomass source and composition matters for both BC and TC

Arborgen

- Tar formation include primary and terairy reaction systems, and the process plays a role
- Por any financial or Life Cycle analysis the entire system must be defined, and the details are very important
- LCA includes 'objective' (if imprecise) criteria and 'subjective' (very imprecise) criteria, and opens the door to a great deal of conflicting outputs

AUBURN UNIVERSITY

NC STATE UNIVERSITY

The University of Georgia

Pirst generation of cellulosic plants will require unique co-location or market drivers

Thank you!

Gracias!

Danke schoen!

Merci!

